BERTScope[™], BERTScope[™]S, and BERTScope SpG Signal Integrity Instruments

Technical Specifications

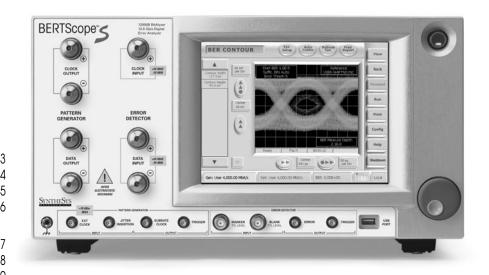
Benefits:

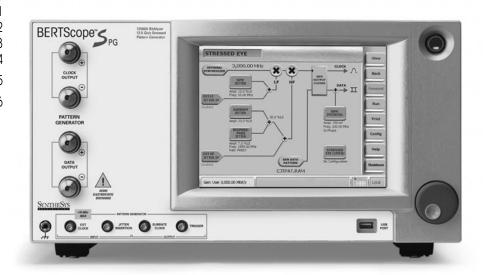
- Integrated Signal Integrity
 Analyzer using the same acquisition circuitry for time, error and jitter domain measurements, to give "same observer" measurements that tie together for faster troubleshooting of your problem devices
- Unique analysis toolkit gives you unrivaled information quality and depth
- 12.5 Gb/s and 7.5 Gb/s (upgradeable) models will cover your needs as your application bit rates increase

Applications:

- Serial Bus Design
- Semiconductor IC Evaluation
- Jitter Tolerance Compliance Testing
- High Speed Backplane Design
- Optical Transceiver Design and Manufacturing
- Recirculating Fiber Loop Experiments

The Vision of a Scope, the Confidence of a BERT, and Clock Recovery you can Count on.





BERTScope, BERTScope S, and BERTScope Spg Technical Specifications

Contents

Pattern Generator:
Data and Clock Outputs
Ancillary Interfaces
Clock Path Details
Stressed Eye Option
Error Detector:
Data and Clock Inputs
Ancillary Interfaces
Rear Panel Interface
User Interfaces10
Eye Diagram Capabilities1
Physical Layer Test Data Options12
Error Analysis13
Jitter Tolerance Option
General Specifications18
Ordering Information

Model	Applicable Pages
BERTScope 12500A, 7500A Signal Integrity Analyzer	Pattern Generator: 3,4 Error Detector: 7 - 12,14 General: 15,16
BERTScope 12500B, 7500B Signal Integrity Analyzer with Stress	All
BERTScope Spg 12500B Stress Pattern Generator	Pattern Generator: 3 - 6 Error Detector: 10 (user interface) General: 15, 16

Pattern Generator

Input/ Output Specifications

CLOCK OUTPUT PATTERN GENERATOR DATA OUTPUT OUTPUT OUTPUT

250 mV to 2V

Figure 1. Amplitude range.

maximum swing

Clock and Clock Outputs

Maximum Frequency: 7.5 Gb/s (BSA7500A) 12.5 Gb/s (BSA 12500A)

Minimum Frequency: 100 Mb/s

Internal Clock

Phase Noise: < -90 dBc/Hz @ 10 kHz offset (typical)

Clock Output

Divide Ratios: For stress models including

Spg, see page 5.

Data/Data, Clock/Clock Amplitudes and Offsets

Configuration: Differential Outputs,

each side of pair individually settable for termination, amplitude, offset.

Interface: DC Coupled, 50Ω

reverse terminated, APC-3.5 connector. Calibration into 75 Ω selectable, other impedances by keypad entry. User-replaceable Planar Crown[®] adapter allows change to other connector types.

Preset Logic Families: LVPECL, LVDS, LVTTL,

CML, ECL, SCFL Variable, -2 to +2V.

Pre-sets: +1.5, +1.3, +1, 0,

-2 V, AC-Coupled

Allowable Amplitudes,

Terminations, and Offsets: See Figures 1 and 2

Data and Data Outputs

Format: NRZ
Polarity: Normal or Inverted
Variable Crossover: 25 to 75%
Patterns:

Hardware Patterns:

Industry standard Pseudo-Random (PRBS) of the following types: 2^n-1 where $n=7,\,11,\,15,\,20,\,23,\,31$

RAM Patterns:

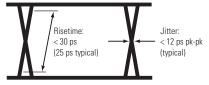
User-defined: 128 bits to 8 Mbits

Two 4 Mbit A/B pages 128-bit word size

Library: Wide variety including

SONET/SDH, Fibre Channel-based such as k28.5, CJTPAT; 2ⁿ patterns where n = 3, 4, 5, 6, 7, 9; Mark Density patterns for

 2^n where n = 7, 9, 23; and many more.


Error Insertion:

Length: 1, 2, 4, 8, 16, 32, 64, 128 bit

bursts

Frequency: Single or repetitive

Data/Data, Clock/Clock Waveform Performance

+2 V Termination voltage

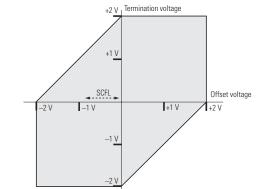


Figure 2. Allowable combinations of termination and offset. Amplitude swings between 0.25 and 2 V allowed; should fit inside shaded area of graph. For example, SCFL uses a 0 V termination, and operates between approximately 0 and –0.9 V; as shown with dotted

arrow, it falls within the operating range.

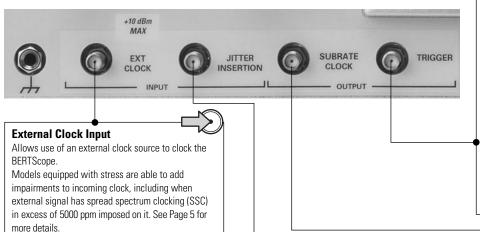
Clock/Data Delay

Clock

Range:

Up to 1.1 GHz 30 ns
Above 1.1 GHz 3 ns
(Greater than 1 bit period in all cases) **Resolution:** 100 fs

Self-Calibration:


Supported – at time of measurement, when temperature or bit rate are changed, instrument will recommend a self calibration. Operation takes less than 10 seconds.

Planar Crown® is a registered trademark of Aeroflex/Weinschel, www.aeroflex-weinschel.com

Pattern Generator Ancillary Connections

Front Panel Pattern Generator Connections

Provides a pulse trigger to external test equipment. It has two modes:

- 1. Divided Clock Mode: Pulses at 1/256th of the clock rate
- 2. Pattern Mode: Pulse at a programmable position in the pattern (PRBS), or fixed location (RAM patterns)

Stress modulation added on models so equipped, when enabled

Minimum Pulse Width: 128 Clock Periods (Mode 1)

512 Clock Periods (Mode 2)

Transition Time: < 500 ps **Jitter** (p-p, data to trigger): < 100 ps

Output Levels: > 300 mV amplitude,

650 mV offset

Interface: 50Ω SMA female, DC

coupled to 0 V

Frequency Range: 0.1 to 12.5 GHz (7.5 GHz)

Nominal Power: +3 dBm Maximum Power: +10 dBm **Return Loss:** Better than -6 dB

Interface: 50Ω SMA female, DC coupled

to selectable termination.

Jitter Insertion (Stressed Eye Option)

Part of the Stressed Eye Option, one of two jitter insertion inputs. Can be used to insert SJ, RJ, BUJ if desired.

Frequency Range: Jitter Amplitude Range: Up to 0.5 UI (max.) Voltage Range:

DC to 1.0 GHz to +10 dBm approximately

(+20 dBm max to avoid damage

 $50~\Omega$ SMA female, DC

coupled to 0 V

Sub-Rate Clock Output

BERTScope model has clock divided by 4. BERTScope with Option SE, BERTScope S and BERTScope Spg have additional capabilities. See page 5.

Frequency Range: 0.125 to 3.125 GHz (12.5 GHz/

7.5 GHz w/Stressed Eye Opt)

Amplitude Range: 1V nominal, centered

> around 0 V < 500 ps

Transition Time: 50Ω SMA female, DC Interface:

coupled to 0 V

Rear Panel Pattern Generator Connections

Pattern Start Input

For users wanting to synchronize patterns of multiple data streams from multiple instruments simultaneously.

Logic Levels: LVTTL (< 0.5 V Lo,

> > 2.5 V hi+1.2 V typical

Threshold: Minimum Pulse Width: 128 serial clock periods

Maximum Repetition Rate: 512 serial clock periods Interface:

SMA female, $> 1 \text{ k}\Omega$ impedance to 0 V

Interface:

Low Frequency Jitter Input

(Stressed Eye Option)

Interface:

Allows use of external low frequency sinusoidal jitter source to modulate the stressed pattern generator output.

Frequency Range: DC to 80 MHz **Jitter Amplitude Range:**

Up to 1ns to +10 dBm approximately Voltage Range:

> (+20 dBm max to avoid damage)

SMA female

Low Frequency

Sinusoidal Jitter Output (Stressed Eye Option) To allow phasing of two BERTScopes together,

in-phase or anti-phase.

Frequency: As set for internal SJ from GUI

Amplitude: 2 V p-p Interface: SMA female,

10 MHz Reference Input

To lock the BERTScope to the 10 MHz reference of another piece of equipment.

Frequency: 10 MHz Amplitude: 0 dBm

Interface: 50Ω SMA female, DC

coupled to 0 V

Page Select Input

In A-B Page Select Mode, allows external control of pattern. Pulse Hi causes instance(s) of Pattern B.

Logic Levels: LVTTL (< 0.5 V Lo,

> 2.5 V hi)

Threshold: +1.2 V typical Minimum Pulse Width: 1 pattern length

Interface: SMA female, $> 1 \text{ k}\Omega$

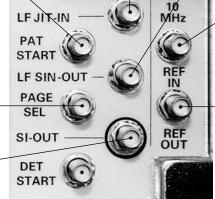
impedance to 0 V

10 MHz Reference Output To allow the BERTScope to act as the 10 MHz

reference that other equipment is locked to.

Frequency: 10 MHz

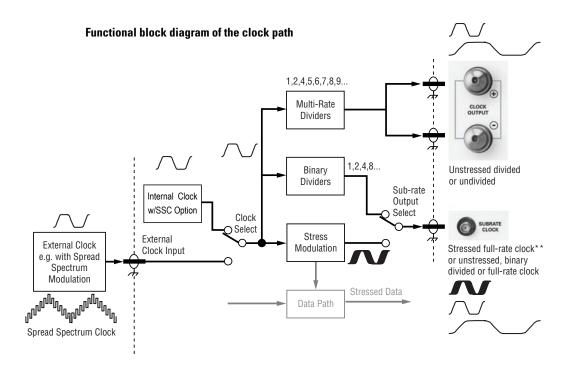
Amplitude: 250 mV p-p, nominal $50~\Omega$ SMA female, DC Interface:

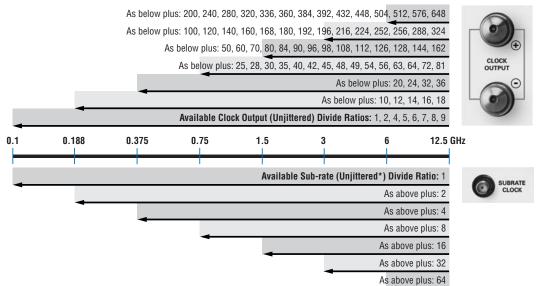

coupled to 0 V

Sinusoidal Interference Output

(Stressed Eye Option)

SI is available single-ended from this connector, and may be applied to JDSU OPTX10, for example. Same frequency range & step size as for internal operation.


Ouput Voltage: 0 - 3V, adjustable from GUI Interface: $50~\Omega$ SMA female



New Clocking For Models With Stress Capability

Models with stress (BERTScope with Option SE fitted, BERTScope S, and BERTScope SPG) have a number of new capabilities to give clock flexibility. These include the ability to stress an external clock, take incoming SSC, and output a wide variety of sub-rate clocks.

Available divide ratios from clock-related output, by bit rate, using the internal clock[†]

- * This output can also provide a full-rate jittered clock.
- † All listed ratios available for an external clock input over entire bit-rate range, limitations for internal clock only.
- ** Stress may be added to an external clock on appropriate models. Stress operating range is from 1.45 to 11.2 Gb/s. External clock must have a duty cycle of 50% ±2%.

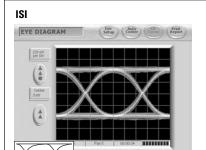
Pattern Generator Stressed Eye

Generator Option

- Flexible, integrated stressed eye impairment addition to the internal or an external clock
- Easy set-up, with complexity hidden from the user with no loss of flexibility
- Verify compliance to multiple standards using the BERTScope and external ISI filters. Standards such as:
 - OIF CEI
 - Serial-ATA II
 - PCI-Express
 - XF
- Sinusoidal interference may be inserted in phase or in anti-phase, or sent externally to a JDSU OPTX10 optical reference transmitter for the creation of 10 Gigabit Ethernet-compliant stressed eyes for receiver jitter tolerance testing
- Sinusoidal jitter may be locked between two BERTScopes in phase or anti-phase, as required by OIF CEI

Flexible External Jitter Interfaces:

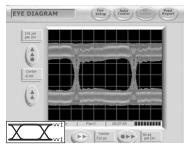
- Front Panel External High Frequency Jitter Input Connector Jitter from DC to 1.0 GHz up to 0.5 UI (max.) may be added, of any type that keeps with amplitude and frequency boundaries
- Rear Panel External SJ Low Frequency Jitter Input Connector Jitter from DC to 80 MHz up to 1ns (max) may be added
- Rear Panel SJ Output
- · Sinusoidal Interference Output rear panel connector



Notes: Specified for data rates from 1.45 Gb/s to 11.2 Gb/s. Usable with limited performance to 622 Mb/s.

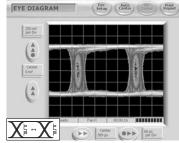
Internal RJ, BUJ, and external high frequency jitter input limited to 0.5 UI, combined.

Rear panel low frequency jitter input can be used to impose additional jitter; SJ and external jitter sum total cannot exceed jitter magnitude limits given for SJ below.


Amplitude & ISI Impairments

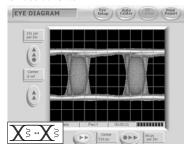
Add externally: For example long coax cable length, or Bessel-Thompson 4th Order Filter with –3 dB point at 0.75 of Bit Rate etc.

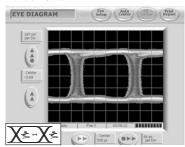
For applications requiring circuit board dispersion, the BERTScope differential ISI accessory may be used.


Sinusoidal Interference

- 100 MHz to 2.5 GHz
- Adjustable in 100 kHz steps
- Adjustable from 0 to 400 mV
- Common mode or differential
- Available from rear panel 50 Ω SMA connector, single-ended with data amplitude from 0 to 3 V adjustable from GUI, same frequency range and step size as internal adjustment

Jitter Impairments


Bounded Uncorrelated Jitter


- Internal PRBS Generator PN-7
- Variable up to 0.5 UI
- 100 Mb/s to 2.0 Gb/s
- · Band limited by selected filters
- see table below:

BUJ Rate	Filter (MHz)
100 to 499	25
500 to 999	50
1,000 to 1,999	100
2,000	200

Sinusoidal Jitter

Random Jitter

- Variable up to 0.5 UI
- Band limited 10 MHz to 1 GHz
- Crest factor of 16 (Gaussian to at least 8 standard deviation or ~1x10⁻¹⁶ probability)

Data Rate	Internal SJ Frequency Range			
	1kHz to 10 MHz	10 MHz to 80 MHz		
10.3125 Gb/s	10.3 UI	2.1 UI		
9.9545 Gb/s	10.0 UI	2.0 UI		
8.5 Gb/s	8.5 UI	1.7 UI		
6.25 Gb/s	6.3 UI	1.3 UI		
6 Gb/s	6.0 UI	1.2 UI		
5 Gb/s	5.0 UI	1.0 UI		
4.25 Gb/s	4.3 UI	0.9 UI		
3.125 Gb/s	3.1 UI	0.6 UI		
3 Gb/s	3.0 UI	0.6 UI		
2.5 Gb/s	2.5 UI	0.5 UI		
2.4883 Gb/s	2.5 UI	0.5 UI		
2.125 Gb/s	2.1 UI	0.4 UI		
1.5 Gb/s	1.5 UI	0.3 UI		

SJ adjustable from 0 to levels greater than or equal to range in table.

Error Detector

Clock and Data Inputs

Clock Input

Maximum Frequency: 12.5 Gb/s & 7.5 Gb/s

(BSA 12500 & 7500)

Minimum Frequency:

500 Mb/s (100 Mb/s for BER and eye diagram measurement)

Data and Data Inputs

Format:

Polarity: Normal or Inverted Threshold: Manually adjustable

from -2.4 V to +2.5 V, or automatically with

Auto-Align

Sampling: Clock rising edge

Sensitivity: Single-Ended

100 mV p-p (typical) Differential: 50 mV p-p (typical) Maximum input

Signal Swing: 2 V p-p

Intrinsic Transition Time: 16 ps typical, 10/90%,

single ended (equivalent to > 20 GHz detector bandwidth). Measured at input, ECL levels.

Patterns:

Hardware Patterns:

Industry standard Pseudo-Random (PRBS) of the following types: $2^n - 1$ where n = 7, 11, 15, 20, 23, 31

RAM Patterns:

User-defined: 128 bits to 8 Mbits

128-bit increments

Wide variety including Library:

> SONET/SDH, Fibre Channel-based such as k28.5, CJTPAT; 2ⁿ patterns where n = 3, 4. 5, 6, 7, 9; Mark Density patterns for 2ⁿ where n = 7, 9, 23; and many

more.

RAM Pattern Capture: Capture incoming data up

to 8 Mbit in length. Edit captured data, send to Pattern Generator. Error Detector or both.

Modes:

1 to 65.536 words. Capture by Length:

1 word default. Words

128 bits in length.

Capture by Triggers: Captures when

"Detector Start" on rear panel goes high, to maximum allowable length or until input

goes low.

Capture by Length from Trigger:

Capture by length initiated from Detector Start input, to pre-specified length.

Data/Data, Clock Interfaces

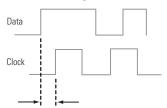
Configuration: Differential data input.

> Single-ended clock input, settable for amplitude,

offset.

Interface: APC-3.5 connector.

Calibration into 75 Ω selectable. Selectable Single-ended, single-ended


Preset Logic Families:

inverted, differential. LVPECL, LVDS, LVTTL, CML, ECL, SCFL.

Terminations: Variable, -2 V to +3 V

> (suitable for DC coupling Picometrix AD-50xr/RR optical receiver). Pre-sets: +1.5, +1.3, +1, 0, -2 V, AC-Coupled

Clock/Data Delay

Range:

Up to 1.1 GHz 30 ns Above 1.1 GHz 3 ns (Greater than 1 bit period in all cases) Resolution: 100 fs

Self-Calibration:

Supported – at time of measurement, when temperature or bit rate are changed, instrument will recommend a self-calibration. Operation takes less than 10 seconds.

Synchronization: User-specified number of Auto-Resync: 128-bit words containing

> 1 or more errors per word initiates a re-sync attempt.

Manual: User initiates re-sync

Pattern Matching:

Grab 'n' Go Error Detector captures specified

pattern length and compares next instances to find match (fast method, but susceptible to ignoring logical errors).

Shift-to-Sync Error Detector compares

incoming pattern with reference RAM pattern, looks for match, if none found, shifts pattern by one bit and compares again (slower but most accurate method).

Error Detector Basic


BER, Bits Received, Measurements:

Re-Syncs, Measured Pattern Generator and Error

Error Detector Ancillary Connections

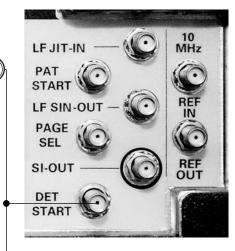
Front Panel Error Detector Connections

Rear Panel Error Detector Connections

Detector Start Input

Used to trigger the acquisition of incoming data into the Error Detector reference pattern memory. High level starts capture.

Amplitude: LVTTL (< 0.5 V Lo,


> 2.5 V hi)

Threshold: +1.2 V

 $\begin{tabular}{ll} \textbf{Minimum Pulse Width:} & 128 \ serial \ clock \ periods \\ \textbf{Maximum Repetition Rate:} & 512 \ serial \ clock \ periods \\ \textbf{Interface:} & SMA \ female, > 1 k \Omega \\ \end{tabular}$

impedance to 0 V

(Not present for BERTScope Spg)

10.3125 Gbit/s

Bits

Errors BER

Resyncs Elapsed Time

ERROR DETECTOR Auto Pattern Search Detected: PRBS-7 Auto Resync Sync Loss Thresh: 128

DETECTOR RESULTS

DET TRIGGER

00:00:00

Error Detector Setup Screen

Back

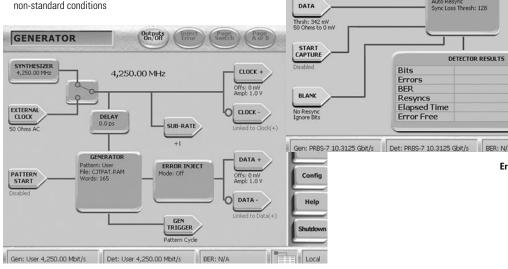
Run

Print

Config

Help

DETECTOR

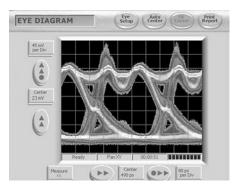

CLOCK

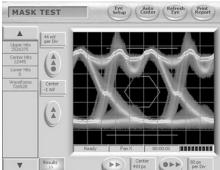
Thrsh: 0 mV 50 Ohms to 0 mV

User Interfaces

Taking Usability to New Heights

- Easy navigation
- Logical layout and operation
- Multiple ways of moving between screens
- Relevant information right where you need it
- Color-coding to alert you to the presence of non-standard conditions

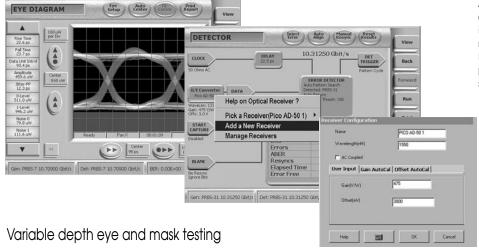



Pattern Generator Set-Up Screen

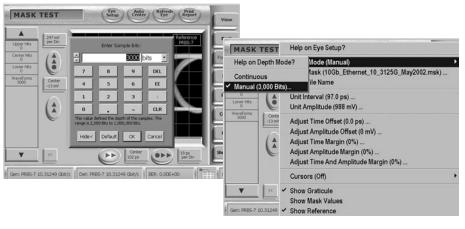
- Used for pattern editing of standard and AB Page Select patterns, also mask editing
- · Views in Binary, Decimal or Hexadecimal
- Support for variable assignments, repeat loops, seeding of PRBS patterns
- · Capture and editing of incoming data for example, to make a repeating pattern out of real-world traffic
- Capture is available by trigger, by length or by length following a trigger
- Capture is by number or words, 1 word is 128 bits. For example, a PRBS-7 (127 bits long) would be captured as 127 words, and would have overall length of 16,256 bits.

BERTScope Built-In Parametric Measurements

All BERTScopes come with Eye Diagrams and Mask Test capabilities as standard, along with Error Analysis.

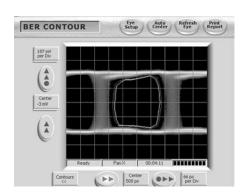

Eye Diagram

- 280x350 pixel waveform display
- Deep acquisition
- Automatic Measurements include:
 - Rise Time
- Fall Time
- Unit Interval (Data, and also Clock)
- Eye Amplitude
- Noise Level of 1 or 0
- Eye Width
- · Eye Height
- Eye Jitter (p-p and RMS)
- 0 Level, 1 Level
- Extinction Ratio
- Vertical Eye Closure Penalty (VECP)
- Dark Calibration
- Signal-to-Noise Ratio
- Vp-p, Vmax, Vmin, Crossing Levels
- Rising and Falling Crossing Level (picoseconds)
- Overshoot 0 level and 1 level


Mask Testing

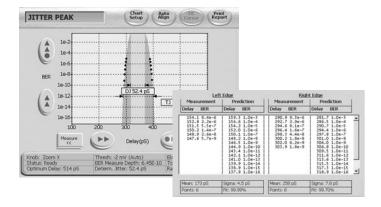
- Library of standard masks e.g. XFP, or edit custom masks
- Addition of positive or negative mask margin
- Import of measured BER Contour to become process control mask
- At least 1000x the sample depth of traditional sampling oscilloscope masks is ideal for ensuring the absence of rare event phenomena

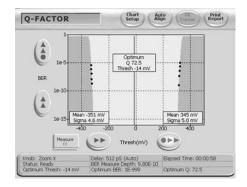
Optical units


An external optical receiver may be added to the input of the BERTScope detector. Through the user interface it is easy to input and save the characteristics of the receiver. Once accomplished, relevant units on physical layer displays are changed to optical power in dBm, μW or mW. Coupling may be AC or DC, and the software steps the user through dark calibration.

For eye diagrams and mask testing, the depth of test may be varied in manual mode; the instrument will take the specified number of waveforms then stop. The range is 2,000 to 1,000,000 bits (complete waveforms). Alternatively, the default mode is Continuous, and the eye or mask test increases in depth over time.

Physical Layer Test Option

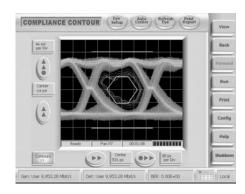



BER Contour Testing

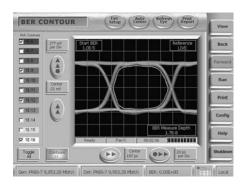
- Executed with same acquisition circuitry as Eye Diagram measurements for maximum correlation
- As-needed delay-calibration for accurate points
- Automatic scaling, one button measurement
- Extrapolates contours from measured data, increasing measurement depth with run-time and repeatedly updating curve-fits
- Easy export of fitted data in CSV format
- Contours available from 10⁻⁶ to 10⁻¹⁶ in decade steps

Jitter Measurements

- Testing to T11.2 MJSQ BERTScan methodology (also called 'Bathtub Jitter')
- Deep measurements for quick and accurate extrapolation of Total Jitter at user-specified level, or direct measurement
- Separation of Random and Deterministic components, as defined in MJSQ
- · As-needed delay-calibration for accurate points
- . Easy export of points in CSV format
- Easy one-button measurement
- · User-specified amplitude threshold level, or automatic selection
- Selectable starting BER to increase accuracy when using long patterns, as defined in MJSQ



Q Factor Measurement


- One-button measurement of a vertical cross-section through the middle of the eye
- · Easy visualization of system noise effects
- . Export of data in CSV format

Compliance Contour

- Validation of transmitter eye performance to standards such as XFP/XFI and OIF CEI
- Overlay compliance masks onto measured BER contours and easily see whether devices pass the BER performance level specified

Live Data Analysis Option

The live data option is designed to measure parametric performance of traffic that is either unknown or non-repeating. This can include traffic with idle bits inserted such as in systems with clock rate matching. It is also suitable for probing line cards, etc.

The option uses one of the two front-end decision circuits to decide whether each bit is a one or zero by placing it in the center of the eye. The other is then used to probe the periphery of the eye to judge parametric performance. This method is powerful for

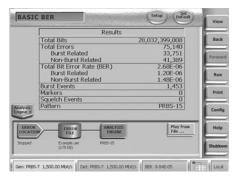
physical layer problems, but will not identify logical problems due to protocol issues, where a zero was sent when it was intended to be a one.

Live data measurements can be made using BER Contour, Jitter Peak, Q Factor. Eye diagram measurements can be made on live data without the use of this option, providing a synchronous clock is available.

The Live Data Analysis option requires the Physical Layer Test Option.

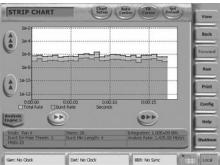
Error Analysis

Error analysis is a powerful series of views that associate error occurrences so that underlying patterns can be easily seen. It is easy to focus in on a particular part of an eye diagram, move the sampling point of the BERTScope there, and then probe the pattern sensitivity occurring at that precise location. For example, it is straightforward to examine which patterns are responsible for late or early edges.

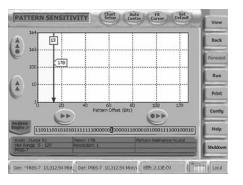

Many views come standard with the BERTScope family.

Analysis Views

- Error Statistics: A tabular display of bit and burst error counts and rates.
- **Strip Chart:** A strip chart graph of bit and burst error rates.
- Burst Length: A histogram of the number of occurrences of errors of different lengths.
- Error Free Interval: A histogram of the number of occurrences of different error free intervals.
- Correlation: A histogram showing how error locations correlate to user-set block sizes or external Marker signal inputs.
- Pattern Sensitivity: A histogram of the number of errors at each position of the bit sequence used as the test pattern.
- Block Errors: A histogram showing the number of occurrences of data intervals (of a user-set block size) with varying numbers of errors in them.


Error Location Capture

Live Analysis Continuous
Error Logging Capacity Max. 2 GB file size
Error Events/Second 10,000
Maximum Burst Length 32 kbits



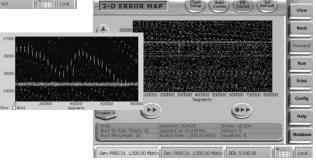
in terms of bit and burst occurrences.

Error Statistics View showing link performance

Viewing bit and burst error performance over time. This can useful while temperature cycling as part of troubleshooting, for example.

Pattern Sensitivity is a powerful way of examining whether error events are pattern related. It shows which pattern sequences are the most problematic, and operates on PRBS and user-defined patterns.

Error Analysis Options


Forward Error Correction Emulation

Because of the patented error location ability of the BERTScope, it knows exactly where each error occurs during a test. By emulating the memory blocks typical of block error correcting codes such as Reed-Solomon architectures, bit error rate data from uncorrected data channels can be passed through hypothetical error correctors to find out what a proposed FEC approach would yield. Users can set up error correction strengths, interleave depths, and erasure capabilities to match popular hardware correction architectures.

2-D Error Mapping

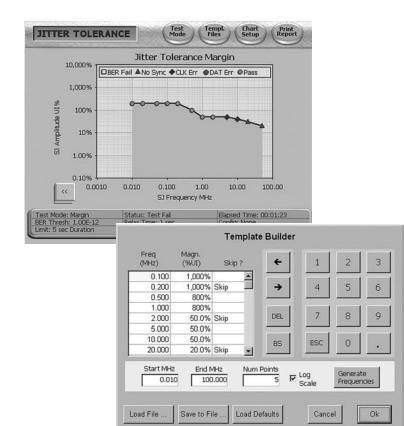
This analysis creates a two-dimensional image of error locations from errors found during the test. Error mapping based on packet size or multiplexer width can show if errors are more prone to particular locations in the packet or particular bits in the parallel bus connected to the multiplexer. This visual tool allows for human eye correlation, which can often illuminate error correlations that are otherwise very difficult to find-even with all the other error analysis techniques.

Jitter Tolerance Template Option

Many standards call for SJ to be stepped through a template with different SJ amplitudes at particular modulation frequencies. This is easy with the built in Jitter Tolerance function which automatically steps through a template that you designed, or one of the many standard templates in the library.

This functionality is standard on BERTScope B models, and is an upgrade software option for customers who already own BERTScopes with stress. It is not available for the SPG model.

Standard Library of Templates


- 10 GBASE LX4 802.3ae 3.125Gb/s
- 10 GbE 802.3ae 10.3125Gb/s
- OIF CEI 11G Datacom Rx Ingress (D) 11Gb/s
- OIF CEI 11G Telecom Rx Egress (Re) 11Gb/s
- OIF CEI 11G Telecom Rx Ingress (Ri) 11Gb/s
- OIF CEI 11G Total Wander 11.1Gb/s
- OIF CEI 11G Total Wander 9.95Gb/s
- OIF CEI 6G Total Wander 4.976Gb/s
- OIF CEI 6G Total Wander 6.375Gb/s
- Fully Buffered DIMM 3.2Gb/s
- Fully Buffered DIMM 4.0Gb/s
- Fully Buffered DIMM 4.8Gb/s
- Fibre Channel 1.0625Gb/s
- Fibre Channel 2.125Gb/s
- Fibre Channel 4.25Gb/s
- · Serial Attached SCSI 1.5Gb/s
- Serial Attached SCSI 3.0Gb/s
- XAUI 3.125Gb/s
- XFI ASIC Rx Input Datacom (D) 10.3125Gb/s
- XFI ASIC Rx Input Datacom (D) 10.519Gb/s
- XFI ASIC Rx Input Telecom (D) 10.70Gb/s
- XFI ASIC Rx Input Telecom (D) 9.95328Gb/s
- XFI Host Rx Input Datacom (C) 10.3125Gb/s
- XFI Host Rx Input Datacom (C) 10.519Gb/s
- XFI Host Rx Input Telecom (C) 10.70Gb/s
- XFI Host Rx Input Telecom (C) 9.95328Gb/s
 XFI No. 1 Telecom (C) 9.95328Gb/s
- XFI Module Tx Input Datacom (B') 10.3125Gb/s
- XFI Module Tx Input Datacom (B') 10.519Gb/s
 XFI Module Tx Input Telecom (B') 10.70Gb/s
- XFI Module TX Input Telecom (B') 9.95328Gb/s

 XFI Module TX Input Telecom (B') 9.95328Gb/s

Some of the areas of adjustment include:

- BER confidence level
- Test duration per point
- · BER threshold
- Test device relaxation time
- · Imposition of percentage margin onto template
- Test precision

Also included is the ability to test beyond the template to device failure at each chosen point, and the ability to export data either as screen images or CSV files.

General

PC-Related:

Display: TFT Touch Screen

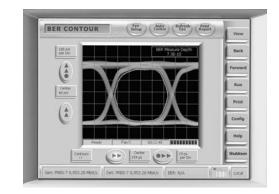
640 x 480 VGA **Touch Sensor:** Analog Resistive

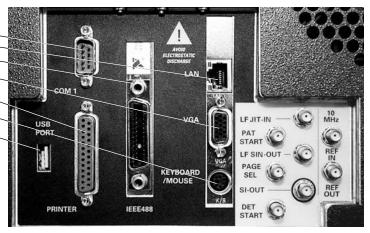
Processor: 1 GHz Pentium or equivalent

Hard Disk: 20 GB or greater DRAM: 256 MB **Operating System:** Windows 2000

IEEE-488 (GPIB) or TCP/IP **Remote Control:**

Supported Interfaces:


Serial (RS-232)


Network (100 Base-T RJ-45 Ethernet)

IEEE-488 (GPIB) Monitor (DB-15 VGA) Printer Port (Centronix)

> Keyboard (Micro) Mouse (PS/2)

USB 1.0 (1 front panel, 1 rear panel)

Physical:

Power: < 400 Watts

Voltage: 90 to 240 V AC, 50 to 60 Hz

Weight: 55 lbs (25 kg)

Dimensions: $8^{3/4}$ " (H) x $15^{1/2}$ " (W)

x 20 3/8" (D)

Environmental:

Warm-up time: 20 minutes

Operating

10 to 40 °C **Temperature Range:**

Humidity: Non-condensing at 40 °C, 15 to 95%

EU EMC Directive

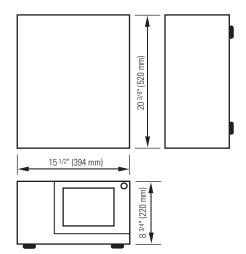
Certifications: (CE-Marked)

UL: Underwriters Labs

(US) certification CSA (Canada)

Support:

Period: 1 year (extendable to 3 years


> with orderable option) Hardware repair or

Coverage: replacement, at SyntheSys

Research's discretion. Also covers software updates. Repairs performed

at the Menlo Park, California, USA facility.

Calibration interval 1 year

NOTES

Rise times are measured 20% to 80% unless otherwise stated.

Specifications are following a 20 minute warm-up period.

Specifications subject to change.

www.bertscope.com

BERTScope Products

	BERTScope Model						
	7500A	S 7500B	12500A	S 12500B	Spg 12500B		
	Generator &	Stress	Generator &	Stress	Stress		
	Analyzer	Generator &	Analyzer	Generator &	Generator		
		Analyzer		Analyzer			
Features							
Maximum Bit Rate	7.5Gb/s	7.5Gb/s	12.5Gb/s	12.5Gb/s	12.5Gb/s		
Flexible Pattern Generation	V	V	V	V	V		
BER Measurement	V	V	V	✓	-		
Eye Diagram, Mask Testing	V	V	V	V	_		
BER Contour, Jitter Peak, Compliance Contour		V		V	_		
Stress Insertion for Jitter Tolerance Receiver Testing		✓		✓	~		
Ability to stress an external clock		V		✓	✓		
Many Subrate Clock Output Divide Ratios		✓		✓	✓		
Jitter Tolerance Templates		✓		✓			
Options							
Option PL - Physical Layer Test Suite: BER Contour, Jitter Peak,							
Compliance Contour	Option	✓	Option	✓	_		
Option JTOL - Jitter Tolerance Template Testing with library of							
common SJ Templates and Margin Test to Failure feature	(Software upgrade option for BERTScope S A model owners)						
Option LDA - Live Data Analysis	Option	Option	Option	Option			
Option ECC - Error correction coding analysis of error location	,	'		'			
data. Emulates ECC algorithms for 1-D, 2-D correctors	Option	✓	Option	✓	-		
Option MAP - Error mapping analysis of error location data. Error							
mapping visualizes errors in a 2-D map using axis dividers	Option	✓	Option	✓	-		
Option RACK - Rackmount Hardware. Kit includes all mounting							
brackets, slides and hardware necessary to mount a BERTScope	Option	Option	Option	Option	Option		
into a standard 19" rack. Slides are adjustable for rack rails 17.5 to	- r	- r · ·	- r · ·	-1	- P		
Option 3YR - Extended warranty. Adds two years to the standard							
one-year product warranty	Option	Option	Option	Option	Option		
Option CAL - Calibration certificate	Option	Option	Option	Option	Option		
·	,	,	,	,	,		
BERTScope Upgrades - BERTScope 12500 xxxx unless otherwise stated							
7500A to S 7500B (BERTScope 7500 A2B)	Option A2B						
7500A to 12500A	Option UP						
S 7500B to S 12500B	option or						
7500A to \$ 12500B	Option UPS						
S 7500A to S 12500B	,	Option SUPS					
12500A to S 12500B			Option A2B				
S 12500A to S 12500B				Option SA2B			
Spg to S 12500B				•	Option PG2B		

✓ - Standard feature

- - Not Available

Option - Available by adding the listed option

For more information on this and other products:

- BERTScope[™] and BERTScope[™] S Signal Integrity Analyzers Technical Specifications, SR-DS014
- BERTScope[™] SPG Product Brief, SR-DS019
- BERTScope™ Differential ISI Board Product Brief, SR-DS018
- BERTScope™ CR Clock Recovery Instrument Product Brief, SR-DS016

Application information:

- Stressed Eye Know what you are testing with, January 2006
- Constructing a 10 GbE Optical Fibre Channel Stressed Eye, January 2006
- Constructing a 4x FC Optical Stressed Eye, January 2006
- Testing the High Speed Electrical Specifications of an XFP Transceiver, July 2006
- Evaluating Stress Components Using BER-Based Jitter Measurements, September 2005

3475-D Edison Way Menlo Park, CA 94025 U.S.A. Voice 650 364-1853 Fax 650 364-5716 info@synthesysresearch.com www.synthesysresearch.com BERTScope is a trademark, and BitAlyzer and Error Location Analysis are registered trademarks of SyntheSys Research, Incorporated. U.S. and International patents granted and pending. Windows is a registered trademark of Microsoft Corporation.

Copyright © 2005-2007 SyntheSys Research, Inc.. All rights reserved. Printed in USA. Specifications subject to change.

SR-DS014 16FEB07