

Agilent 81150A Pulse Function Arbitrary Noise Generator

Data Sheet

Version 1.02

A high precision pulse generator enhanced with versatile signal generation, modulation and distortion capabilities for:

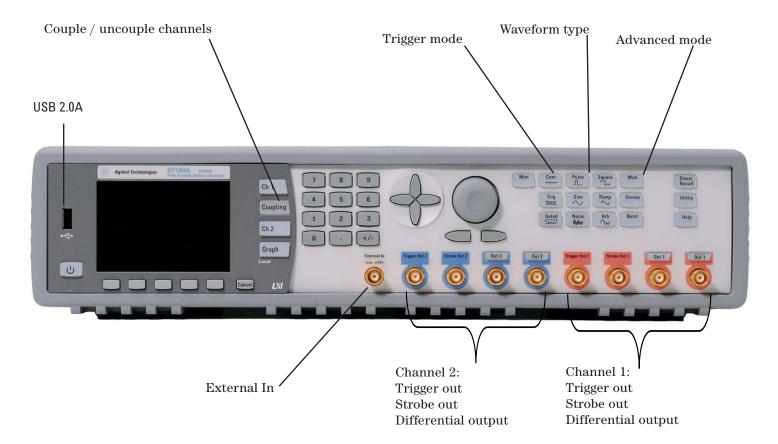
- Accurate signals to test your device and not your signal source
- Versatile waveform and noise generation to be ready for today's and tommorrow's stress test challenges
- Integrated into one instrument to minimize cabling, space and test time.

When signal fidelity matters – test with confidence.

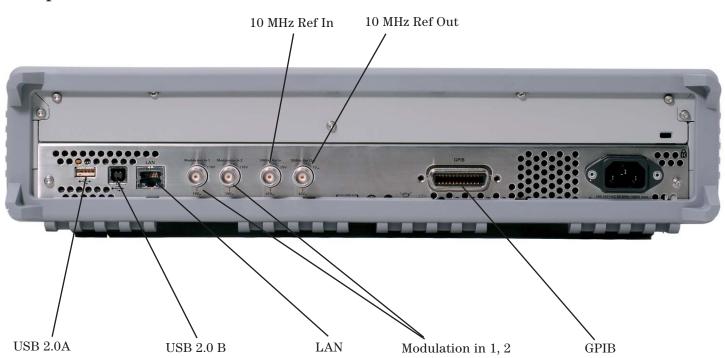
Accurate and accelerated insight into your device through ideal and real-world signals.

The 81150A Pulse Function Arbitrary Noise Generator at a Glance

- 1 μHz–120 MHz pulse generation with variable rise/fall time
- 1 μHz–240 MHz sine waveform output
- 14-bit, 2 GSa/s arbitrary waveforms
- 512k samples deep arbitrary waveform memory per channel
- Pulse, sine, square, ramp, noise and arbitrary waveforms
- Noise, with an adjustable crest factor, and signal repetition time of 26 days
- FM, AM, PM, PWM, FSK modulation capabilities
- 1 or 2 channel, coupled and uncoupled
- Differential outputs
- Two selectable output amplifiers:


High bandwidth amplifier

- Amplitude: 50 mVpp to 5 Vpp; 50 Ω into 50 Ω 100 mVpp to 10 Vpp; 50 Ω into open
- Voltage window: \pm 5 V; 50 Ω into 50 Ω \pm 10 V; 50 Ω into open \pm 9 V; 5 Ω into 50 Ω


High voltage amplifier

- Amplitude: 100 mVpp to 10 Vpp; 50 Ω into 50 Ω , 200 m pp to 20 Vpp; 5 Ω into 50 Ω , or 50 Ω into open
- Voltage window: $\pm 10 \text{ V}$; 50Ω into 50Ω $\pm 20 \text{ V}$; 5Ω into 50Ω or 50Ω into open
- Glitch free change of timing, parameters (delay, frequency, transition time, width, duty cycle)
- Programming language compatible with Agilent 81101A, 81104A, 81105A
- ISO 17025 and Z540 calibration
- LXI class C compliant

Front Panel:

Back panel:

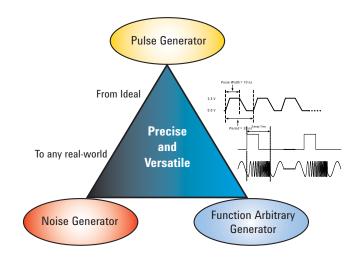
Today's Challenges Require a New Generation of Test Instruments

You are under pressure to get products to market faster and faster, with shrinking design schedules and increasing quality goals. The pressure is never ending. Because differentiation means survival in the marketplace, you often have to test unique functionality. Being confident in your results takes highly adaptable and efficient testing.

Such challenges require a new generation of test instruments, which are:

- Accurate, to test your device and not your source
- Versatile, to be ready for today's and tomorrows test challenges
- Plug and play solutions, with minimal cabling, low space overhead and have many functions built-in.

Whichever way you look at it, this starts with accurate, versatile and uncompromising signal sources.


Just test – with the signal you need.

Agilent's offering

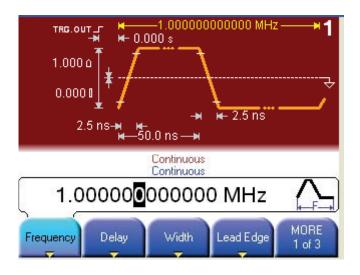
The Agilent 81150A Pulse Function Arbitrary Noise Generator sets the standard for the next generation of lab: for fast, accurate insight into your design or device under test.

- A pulse generator with precise signals for performance verification and characterization
- A function arbitrary generator
 - for versatile signal generation to optimize testing
 - for modulation to shape the signal the DUT needs
- A noise generator to distort signals to build up worst case scenarios.

Agilent 81150A Pulse Function Arbitrary Noise Generator

... the foundation for an accurate insight into your device

The new Agilent 81150A Pulse Function Arbitrary Noise Generator is an indispensable contributor to accelerate ideal and real-world testing.

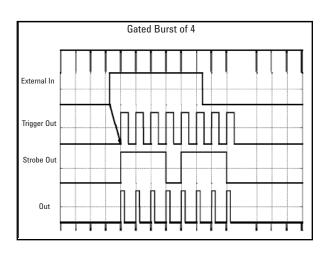

Pulse Generator—Test your device and not your source

Superior precision pulses with unbeatable timing stability guarantee reproducible tests. The signal quality and trigger functionality provide everything you need for trigger or system clock applications.

You can change the timing parameters (delay, frequency, transition time, width, duty cycle) without dropouts or glitches. This patented, industry-leading feature means continuous operation without having to reboot or reset your device under test, for example when you are characterizing a device by sweeping the clock frequency.

Apart from full control of the timing parameters, you can also adjust levels and edges as needed.

81150A Channel 1 Pulse Setup

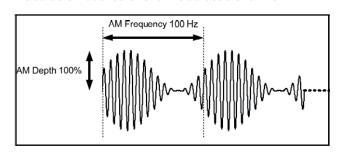


Set up complex measurements

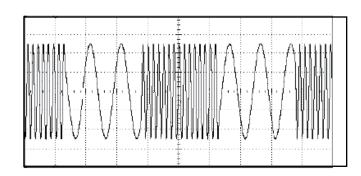
The Agilent 81150A Pulse Function Arbitrary Noise Generator is available in a 1 or 2 channel version. On the two channel version, the channels can be uncoupled, to work independently, or coupled, for example, with a defined delay between them.

Each channel provides trigger out, strobe out and differential outputs: the basis for many complex test set ups.

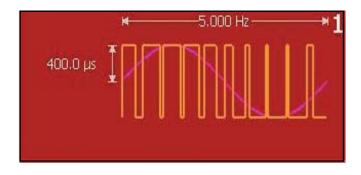
Measurement using Strobe and Trigger

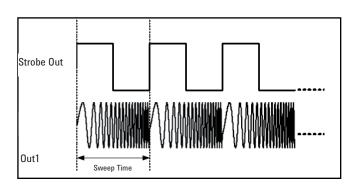

Function Arbitrary Generator — Stress your device to its limit

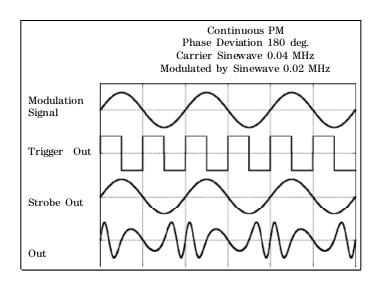
If you need further signal conditioning, the Agilent 81150A Pulse Function Arbitrary Noise Generator provides versatile waveforms and modulation capabilities to adapt your signal to your device's requirements. AM, FM, FSK, PM and PWM are available at modulation frequencies up to 10 MHz.


The Agilent 81150A Pulse Function Arbitrary Noise Generator can use internal or external modulation sources.

Internal modulation can be generated from the 2nd channel or the internal modulation source of the modulated channel.

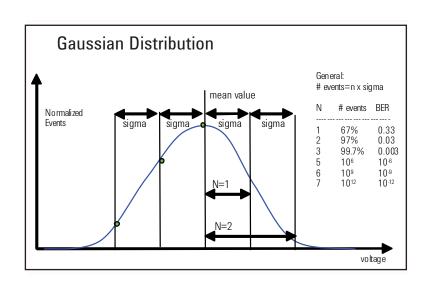

Amplitude Modulation


Frequency Shift Key Modulation

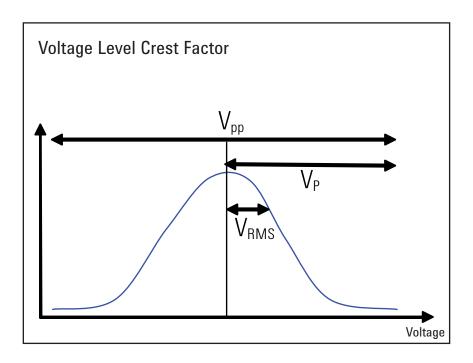

Pulse Width Modulation

Frequency Sweep

Setting Up a Measurement Using Trigger, Strobe, Modulation and Carrier


Noise Generator— Repeatable and Stochastic Noise

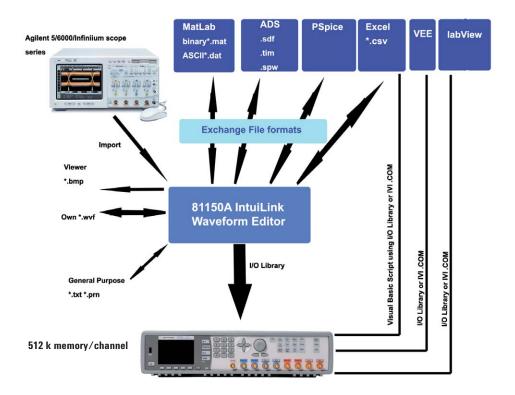
Jitter and noise cause misalignment of edges and levels, resulting in data errors. Noise is by its nature unpredictable because it can have many different causes, from signal interference caused by sudden voltage changes, to distortions introduced during transmission.


It is important to be able to simulate noise-based malfunctions, for example, to identify the additive noise produced by receiving systems — it is cheaper to lower the noise figure than to increase the transmitter power! The Agilent 81150A Pulse Function Arbitrary Noise Generator lets you control the quality of the noise, to test different cases, and according to various specifications.

Gaussian white noise is a good approximation to many real-world situations, and creates mathematically traceable models, with statistical independent values. The Agilent 81150A Pulse Function Arbitrary Noise Generator provides deterministic Gaussian white noise, with a signal repetition of 26 days. You can decide on any arbitrary distribution, and trigger the noise to start when you need it.

Gaussian curve and distribution

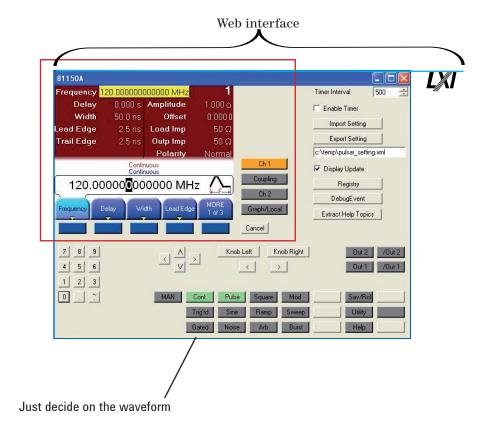
You can also select the crest factor out of 4 values — an indicator of signal quality — using $Vp/V_{\tiny RMS}$ or $Vpp/V_{\tiny RMS}$ scales, depending on the standard to which you are testing. The 81150A uses the definition: Crest Factor = $Vp/V_{\tiny RMS}$

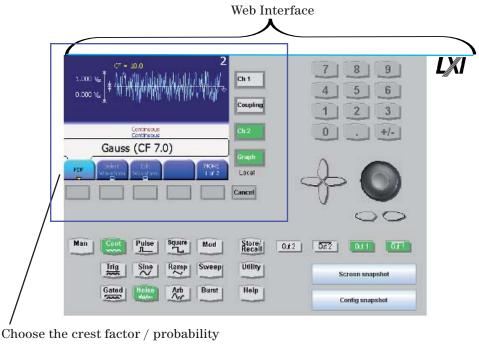

The result is noise that combines two extremes:

- Random and repeatable noise, for stress tests on one side
- While still being sufficiently random.

Connectivity

Filling the Arbitrary Memory Easily


There are several possibilities for filling the arbitrary memory. There are 6 built-in, standard arbitrary waveforms, but you can also create any waveform you need, either on the instrument or on a PC, using the 81150A IntuiLink Waveform Editor.


Measurement anywhere and anytime.

The Web interface allows you to use the full functionality and feature set of the Agilent 81150A Pulse Function Arbitrary Noise Generator from any Web interface.

Channel 1: Instrument view

Channel 2

function you need

Modes of Operation

There are four components to the mode of operation:

- Coupling between channels
- Trigger mode
- Waveform type
- Advanced modes

Coupling between channel 1 and 2

The two channel version has two distinct modes of operation:

- **Coupling off:** The two channels operate independently. Frequency generation for both channels is based on the same clock reference, but can be selected independently.
- Coupling on: The frequency, trigger mode, waveform type and advanced mode are identical for both channels. The fix delay of channel 1 and channel 2 is the same.

Trigger modes

- **Continuous**: Continuous waveform, burst, sweep or modulation. The External In is not used in continuous mode.
- Externally triggered: Each active transition at the External In (rising, falling or both) generates a single waveform, burst or sweep.
- Externally gated: The active level (high or low) at the External In enables waveforms, bursts or sweeps. The last waveform, burst or sweep is always completed.
- **Internally triggered**: The internal clock replaces the external trigger source. This can be applied for waveform, burst, or sweep.
- **Manual**: This generates a single trigger. The source is either a button on the front panel or a remote command.

Trigger rate: 1 µHz to 120 MHz (external or internal)

Waveform types

- Standard waveforms: Pulse, sine, square, ramp, noise, arbitrary
- **Predefined arbitrary waveforms:** Exponential rise, exponential fall, $\sin(x)/x$, cardiac and DC

Pulse Characteristics	
Frequency range	
High bandwidth amplifier	$1~\mu Hz$ to $120~MHz$
High voltage amplifier	$1~\mu Hz$ to $50~MHz$
Pulse width	
Range	
High bandwidth amplifier	4.16 ns to (period - 4.16 ns)
High voltage amplifier	10 ns to (period - 10 ns)
Resolution	100 ps, 6 digits
Accuracy	$\pm 500 \text{ ps} \pm 50 \text{ppm}$
Transition time (independent rise and fall)	
Range	
High bandwidth amplifier	
High voltage amplifier	2.5 ns to 1000 s (10% to 90%)
Resolution	7.5 ns to 1000 s (10% to 90%)
Accuracy	100 ps, 6 digits
High bandwidth amplifier	
High voltage amplifier	± 500 ps ± 50ppm
	-1000 ps to +500 ps ± 50ppm
Overshoot	2% typ.
Sine Characteristics	
Frequency range	
High bandwidth amplifier	1 μHz to 120 MHz
High voltage amplifier	1 μHz to 50 MHz
Harmonic distortion	1Vpp 3Vpp
(High bandwidth amplifier 50Ω into 50Ω)	1,bb 2,bb
1 μHz to 2 MHz	<-65 dBc <-62 dBc
2 MHz to 10 MHz	<-62 dBc <-55 dBc
10 MHz to 35 MHz	<-50 dBc <-45 dBc
35 MHz to 70 MHz	<-35 dBc <-30 dBc
70 MHz to 240 MHz	<-22 dBc <-17 dBc
Harmonic distortion	
(High voltage amplifier 50 Ω into 50 Ω)	10 Vpp
(High voltage ampliner 50 12 litto 50 12)	10 Vpp
1 μHz to 1 MHz	<-55 dBc
1 MHz to 10 MHz	<-40 dBc
10 MHz to 50 MHz	< -27 dBc
Non-harmonic (spurious) distortion	
$1~\mu Hz$ to $20~MHz$	-60 dBc typ.
20 MHz to 200 MHz	-55 dBc typ.
200 MHz to 240 MHz	-50 dBc typ.
SSB phase noise (10 kHz offset)	
1 MHz	-119 dBc/Hz typ.
10 MHz	-115 dBc/Hz typ.
240 MHz	-93 dBc/Hz typ.

\sim		\sim 1			
C 0	IIOro	Ihara	ヘナハ	ric	ナルへの
OU	uare	Chara	ut	115	บเเร

Square Characteristics	
Frequency range	
High bandwidth amplifier	1 μHz to 120 MHz
High voltage amplifier	1 μHz to 50 MHz
Duty cycle	
High bandwidth amplifier	(Freq/240 MHz) to 1 - (Freq/240 MHz)
	e.g. 60 MHz 25% to 75%
High voltage amplifier	(Freq/100 MHz) to 1 - (Freq/100 MHz)
	e.g. 1 MHz 1% to 99%
Resolution	0.1%
Transition Time (10% to 90%)	
High bandwidth amplifier	2.5 ns typ. fixed
High voltage amplifier	6 ns typ. fixed
Overshoot	2% typ.

Ramp Characteristics

Ramp Characteristics	
Frequency range	1 μHz to 5 MHz
Linearity	< 0.1% (f < 10 kHz)
Symmetry	0.0% to 100%

Noise Characteristics

Noise Characteristics	
Bandwidth High bandwidth amplifier High voltage amplifier	120 MHz typ. 40 MHz typ.
Amplitude distribution	Selectable gaussian, user defined
Crest factor (Peak/RMS) selectable	3.1, 4.8, 6.0, 7.0 typ. (gaussian distribution)
Noise type	Deterministic, triggerable
Repetition time	~26 days

Arbitrary Characteristics

Arbitrary Characteristics		
Waveform length	2 points to 512k points	
Sample rate		
Memory	1 GSa/s	
DAC	2 GSa/s (1)	
Amplitude resolution	14 bits	
Frequency range	1 μHz to 120 MHz	
Transition time		
High bandwidth amplifier	1.7 ns typ.	
High voltage amplifier	5 ns typ.	
Filter bandwidth		
High bandwidth amplifier	240 MHz typ.	
High voltage amplifier	80 MHz typ.	
PP jitter	1 ns typ.	

⁽¹⁾ Linear interpolation between two memory samples

Advanced Modes

Modulation

Three advanced modes exist:

- **Modulation**: Selects the modulation type: AM, FM, PM, FSK, PWM
- **Sweep**: For frequency sweeps.
- **Bursts**: Repeats selected waveform n times.

A modulation input (for AM, FM, PM, FSK, PWM) for each channel is provided on the back-panel.

In the two channel instrument one channel can also modulate the other channel.

Modulation In1 / Modulation In2	
Input range (full scale)	Selectable ±2.5 V or ±5 V
Frequency range	DC to 10 MHz
Input impedance	Selectable 10 k Ω , 50 Ω nominal
Connector	BNC, back panel

AM	
Carrier waveforms	Sine, square, ramp, arbitrary
Internal modulation	Sine, square, ramp (up, 50%, down), noise, arbitrary
Modulation frequency	
Internal	1 mHz to 10 MHz
External	DC to 10 MHz
Depth	0% to 120%
Double-sideband suppressed carrier	Selectable on/off
Source	Internal, external, channel

FM	
Carrier waveforms	Sine, square, ramp, arbitrary
Internal modulation	Sine, square, ramp (up, 50%, down), noise, arbitrary
Modulation frequency	
Internal	1 mHz to 10 MHz
External	DC to 10 MHz
Deviation range	1 μHz to 240 MHz ⁽¹⁾
Source	Internal, external, channel

⁽¹⁾ Max frequency depends on selected waveform

PM	
Carrier waveforms	Sine, square, ramp, arbitrary
Internal modulation	Sine, square, ramp (up, 50%, down), noise, arbitrary
Modulation frequency	
Internal	1 mHz to 10 MHz
External	DC to 10 MHz
Deviation range	0.0° to 360.0°
Source	Internal, external, channel

FSK	
Carrier waveforms	Sine, square, ramp, arbitrary
Internal modulation	50% square
FSK rate	1 mHz to 10 MHz
Frequency range	1 mHz to 240 MHz ^{(1) (2)}
Source	Internal, external, channel

- (1) (2) Max frequency depends on selected waveform
- For export control: Effective switching time is 40 ns.

PWM

Pulse
Sine, square, ramp (up, 50%, down), noise, arbitrary
1 mHz to 10 MHz
DC to 10 MHz
0% to 100% of pulse width
Internal, external, channel

Sweep

An independent frequency sweep is provided for each channel.

Sweep	
Waveforms	Pulse, sine, square, ramp, triangle, arbitrary
Туре	Linear or logarithmic
Direction	Up or down
Sweep time	100 μHz to 500 s
Start frequency / stop frequency	1 μHz to 240 MHz ⁽¹⁾
Trigger source	External, internal, manual
Marker	Frequency marker

⁽¹⁾ Max frequency depends on selected waveform

Burst

An independent burst capability is provided for each channel.

Burst	
Waveforms	Pulse, sine, square, ramp, triangle, arbitrary
Frequency	1 μHz to 120 MHz
Modes	Externally triggered, internally triggered, externally gated
# of waveforms in a burst	2 to 1,000,000
Trigger period	16.7 ns to 9999 s
Start phase ⁽¹⁾	-360° to +360°
Gate source	External
Trigger source	External, internal, manual

Available for all waveforms except pulse, square and ramp (1)

Outputs

Main Outputs

A selectable single-ended or differential output is provided for each channel on the front-panel.

Max. Frequency	
High bandwidth amplifier	120 MHz Pulse / 240 MHz Sine
High voltage amplifier	50 MHz

Out1/Out2	
Output type	Single-ended or differential
Amplitude (50 Ω into 50 Ω)	
High bandwidth amplifier	
1 μHz to 120 MHz	50 mVpp to 5 Vpp (1)
120 MHz to 240 MHz	50 mVpp to 3Vpp (1)
High voltage amplifier	
1 μHz to 50 MHz	100 mVpp to 10 Vpp (1)
Amplitude (50 Ω into 50 Ω)	
High bandwidth amplifier	
1 μHz to 120 MHz	100 mVpp to 10 Vpp (1) (to 9 Vpp(2))
120 MHz to 240 MHz	100 mVpp to 5 Vpp $^{(1)}$
High voltage amplifier	000 1/
1 μHz to 50 MHz	200 mVpp to 20 Vpp (1)
Amplitude accuracy	± (1.5% of setting + 5 mV)
Voltage window (50 Ω into 50 Ω)	
High bandwidth amplifier	-5 V to +5 V
High voltage amplifier	-10 V to +10 V
Voltage window (50 Ω into open, 5 Ω into 50 Ω)	
High bandwidth amplifier	
High voltage amplifier	-10 V to +10 V $^{(1)}$ (-9 V to +9 V $^{(2)}$)
	-20 V to +20 V
Offset accuracy	
± 5 V Voltage window	± (25 mV + 1%)
± 10 V Voltage window	± (50 mV + 1%)
± 20 V Voltage window	± (75 mV + 1%)
Resolution	1 mV, 4 digits
Output impedance	Selectable 50 Ω / 5 Ω typ.
Variable load impedance	$0.3~\Omega~$ to 1 M $\!\Omega^{(3)}$
Protection	Short-circuit protected, overload
	disables main output
Connector	BNC, front panel

⁽¹⁾ All amplitudes are single-ended amplitudes. Differential peak-peak amplitudes are twice the single-ended value.

^{(2) 10} Vpp for 50 Ω into Open; 9 Vpp for 5 Ω into 50 Ω

⁽³⁾ Current of Normal Out plus current of Complement Out is limited to 440 mA per channel

Clock Reference

External Reference Output	
Frequency	10 MHz
Accuracy	± 50 ppm
Stability	± 2 ppm, 0° to 50°C
Aging	± 1 ppm per year
Output level	1 V nominal
Impedance	50 Ω nominal, AC coupled
Connector	BNC, rear panel

External Reference Input	
Lock range	10 MHz ± 500 ppm
Input range	200 mV $_{DD}$ to 5 V $_{DD}$
Impedance	1 kΩ nominal, AC coupled
Connector	BNC, rear panel

Internal Frequency Characteristics

Internal Frequency Characteristics	
Accuracy	± 50 ppm
Stabilty	± 2 ppm, 0° to 50°C
Aging	± 1 ppm per year

External Input

A common external input is provided for both channels on the front panel. The External In is used for external trigger or external gate modes.

External Input	
Frequency range	DC to 120 MHz
Input range	-10 V to +10 V
Maximum input amplitude	10 Vpp
Input sensitivity	200 mVpp
Threshold	
Range	-10 V to 10 V
Resolution	100 mV
Impedance	Selectable 10 k Ω /50 Ω , DC coupled
Slope	Selectable, rising/falling/both
Pulse width	> 3.3 ns
Transition time	< 100 ns
Connector	BNC, front panel

Trigger Outputs

A separate trigger output is provided for each channel on the front-panel.

In advanced mode internally/externally modulated (AM, FM, PM, PWM), the trigger output has the frequency of the unmodulated carrier waveform, with a 50% duty cycle.

For FSK modulation the Trigger Output outputs the same frequency as the data output. That is, it alternates between the two frequencies.

If noise is selected, a trigger signal is generated when noise is restarted internally, externally or manually.

Trigger Out1/Trigger Out2	
Output level	selectable TTL/ECL
TTL	0V / 2.5 V nominal
ECL	-0.85 V / -1.80 V nominal
Pulse width	
Internally triggered, continuous	50% duty cycle typ.
Externally triggered	4 ns typ.
Transition time (20% to 80%)	2.0 ns typ.
Maximum rate	120 MHz ⁽¹⁾
Impedance	50 Ω nominal
Connector	BNC, front panel

⁽¹⁾ For output frequencies > 120 MHz, the trigger rate is ¼ of the output frequency. If a frequency sweep or a FSK frequency exceeds 120 MHz, the trigger rate is ¼ of the output frequency.

Strobe Outputs

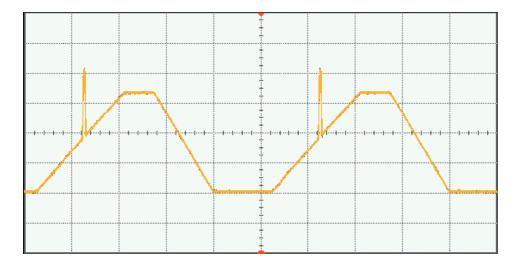
A strobe output is provided for each channel on the front-panel.

The strobe output signal has a different function, depending on the mode of operation.

If no advanced mode is selected, the strobe output is a constant low.

In advanced mode internal/external triggered or gated burst, the strobe output provides a signal indicating the duration of a burst. The rising edge of the strobe signal is synchronized to the start of the first waveform period in a burst. The falling edge is synchronized to the start of the last waveform period in the burst.

In advanced mode sweep with the frequency marker off, the strobe output is a pulse with half the duration of the sweep. The strobe signal goes high at the beginning of the sweep.


In advanced mode sweep with the frequency marker on, the strobe output goes high at the beginning of the sweep and goes low at the marker frequency.

In advanced mode internally / externally modulated (AM, FM, FSK, PM, PWM), the strobe output is the analog modulation waveform.

Selectable TTL/ECL
0 V / 2.5 V nominal
-0.85 V / -1.80 V nominal
-2 V to 2.0 V (full scale)
50 Ω nominal
BNC, front panel
4 ns typ.
2.0 ns typ.

Digital Channel Addition

If the instrument is equipped with two output channels, channel 2 can be added to channel 1 internally. The maximum output voltage of channel 1 remains unchanged. If channel addition is selected, channel 2 outputs the unchanged waveform of channel 1.

Timing Characteristics

D.I. F II M.: 01/0	
Delay: External In to Main Out1/2	
Fix Delay	
Advance Mode: Off, Burst	366 ns typ, fixed
Advanced Mode: Sweep	350 ns typ, fixed
Variable Delay(1)	Independent for Out 1, Out 2
Range	0s to 1000s (2)
Resolution	100 ps, 6 digits
Accuracy	± 25 ps ± 50 ppm
· · · · · · · · · · · · · · · · · · ·	
Delay: External In to Trigger Out1/2	
F' D. L.	
Fix Delay	
Advanced Mode: Off, Burst	366 ns typ, fixed
Advanced Mode: Sweep	350 ns typ, fixed
Delay: External In to Trigger Out1/2	
, 30	
Fix Delay	
Advanced Mode: Off, Burst	366 ns typ, fixed
Advanced Mode: Sweep	350 ns typ, fixed
	030 H3 typ, Hxcu
Jitter ⁽³⁾	
External In to Main Out 1/2	70 ps peak-peak typ.

70 ps peak-peak typ.

70 ps peak-peak typ.

External In to Trigger Out 1/2

External In to Strobe Out 1/2

External In Timing Characteristics

⁽¹⁾ Not available, if Sweep or Modulation is selected

⁽²⁾ Trigger period ≥ Variable delay

⁽³⁾ External In Amplitude > 500 mV. External In Transition Time <10ns.
Valid for External Triggered Pulse, Square, Sine, Ramp, Arb. External
Triggered Noise or External Triggered Sweep has peak-peak jitter of
8 ns typ.

Continuous or Internally Triggered **Timing Characteristics**

0 ns typ, fixed Independent for Out 1, Out 2 0 to 1 Waveform Period 0 to 1000 s
Independent for Out 1, Out 2 0 to 1 Waveform Period 0 to 1000 s
0 to 1 Waveform Period 0 to 1000 s
0 to 1000 s
100 ps, 6 digits
± 25 ps ± 50 ppm
0 ns typ, fixed
35 ps peak-peak typ.
40 ps peak-peak typ.
45 ps peak-peak typ.
45 ps peak-peak typ.

- Not available, if Sweep or Modulation is selected Advanced Mode = Off or Advanced Mode = Burst (1)
- (2)
- Trigger period ≥ Variable Delay (3)
- Valid for continuous or internal triggered Pulse, Square, Sine, Ramp, Arb. Internally triggered or continuous noise or sweep has peak-peak jitter of 8 ns typ.

Coupled Mode on Timing Characteristics

Coupled Mode On Timing Characteristics	
Delay: Main Out1 to Main Out2	
Fix Delay	0 ns typ.
Variable Delay Out 1/2 ⁽¹⁾	Independent for Out 1, Out 2
Range in continuous mode(2)	0 to 1 Waveform Period
Range in internally triggered(3)	0 to 1000 s
Resolution	100 ps, 6 digits
Accuracy	± 25 ps ± 50 ppm

- (1) Not available, if Sweep or Modulation is selected
- Advanced Mode = Off or Advanced Mode = Burst (2)
- (3) Trigger period ≥ Variable Delay

Download Times

Block transfer is the fastest way to download waveforms to the Agilent 81150A Pulse Function Arbitrary Noise Generator. This is the type of download the 81150A IntuiLink Waveform Editor and the 81150A IVI-COM driver use.

Download Times: Block Transfer			
	USB 2.0	GPIB	LAN
1 k points	31 ms typ.	35 ms typ.	35 ms typ.
8 k points	65 ms typ.	120 ms typ.	80 ms typ.
64 k points	700 ms typ.	1 s typ.	730 ms typ.
512 k points	2.9 s typ.	5.2 s typ.	3.7 s typ.

Download Times: Integer Comma Separated Values							
USB 2.0 GPIB LAN							
1 k points	220 ms typ.	200 ms typ.	220 ms typ.				
8 k points	1.8 s typ.	1.6 s typ.	1.4 s typ.				
64 k points	14.2s typ.	12.6 typ.	12s typ.				

Download Times: Float Comma Separated Values							
USB2.0 GPIB LAN							
1 k points	290 ms typ.	280 ms typ.	270 ms typ.				
8 k points	2.4 s typ.	2.1 s typ.	1.9 s typ				
64 k points	20 s typ.	16 s typ.	15 s typ.				

81150A IntuiLink Waveform Editor Import File Formats

Import File Formats		
Excel	.xls .txt .prn .csv	
Matlab	.mat .dat	
ADS	.sdf .tim .spw	
Pspice	.txt .out	
DS07000, MS07000 Series		
DS06000,MS06000 Series		
5000 Series		
Infiniium (8000, 80000, 548xx) Series		
546xx Series		

General Specifications

General Specifications	
Power supply	100 V to 240 V ~, 50-60 Hz 100 V to 127 V ~, 50-400 Hz
Power consumption	180 W max.
Operating temperature	0°C to 50°C
Operating altitude	up to 2000 m
Storage temp.	-40 °C to 70 °C
Stored states	4 named user configurations and factory default
Power on state	Default or last state
Interface	2 x USB 2.0 standard A, 1 x USB 2.0 standard B, GPIB and LAN 10/100
Programming language	SCPI-1997 IEEE-488.2
Dimensions (WxHxD) Bench top Rack mount	439 mm x 108 mm x 456 mm 428 mm x 89 mm x 439 mm
Weight	8 kg
Safety designed to	IEC61010-1 UL61010 CSA22.2 61010.1 certified
EMC tested to	IEC61326
Warm up time	30 min.
Calibration interval	1 year recommended
Warranty	1 year standard

Cooling requirements: When operating the 81150A choose a location that provides at least 80 mm of clearance at rear, and at least 30mm of clearance at each side.

Available Modes of Operation

Continuous								
		Pulse	Square	Sine	Ramp	Noise	Arb	DC
Advanced mode: Off		Υ	Υ	Υ	Υ	Υ	Υ	Υ
Advanced mode: Bu	ırst	Υ	Υ	Υ	Υ	N	Υ	N
Advanced mode:	AM	N	Υ	Υ	Υ	N	Υ	N
Modulation	FM	N	Υ	Υ	Υ	N	Υ	N
	PM	N	Υ	Υ	Υ	N	Υ	N
	FSK	N	Υ	Υ	Υ	N	Υ	N
	PWM	Υ	N	N	N	N	N	N
Advanced mode: Sweep		N	Υ	Υ	Υ	N	Υ	N

Internally Triggered or Externally Triggered								
		Pulse	Square	Sine	Ramp	Noise	Arb	DC
Advanced mode: Off		Υ	Υ	Υ	Υ	Υ	Υ	N
Advanced mode: Bu	ırst	Υ	Υ	Υ	Υ	N	Υ	N
Advanced mode:	AM	N	N	N	N	N	N	N
Modulation	FM	N	N	N	N	N	N	N
	PM	N	N	N	N	N	N	N
	FSK	N	N	N	N	N	N	N
	PWM	N	N	N	N	N	N	N
Advanced mode: Sweep		N	Υ	Υ	Υ	N	Υ	N

Gated								
		Pulse	Square	Sine	Ramp	Noise	Arb	DC
Advanced mode: Off		Υ	Υ	Υ	Υ	Υ	Υ	N
Advanced mode: Bu	ırst	Υ	Υ	Υ	Υ	N	Υ	N
Advanced mode: Modulation	AM	N	N	N	N	N	N	Ν
	FM	N	N	N	N	N	N	N
	PM	N	N	N	N	N	N	N
	FSK	N	N	N	N	N	N	N
	PWM	N	N	N	N	N	N	N
Advanced mode: Sweep		N	Υ	Υ	Υ	N	Υ	Ν

Ordering Information

Agilent 81150A

#001	1-channel Pulse Function Arbitrary Noise Generator
#002	2-channel Pulse Function Arbitrary Noise Generator
$#1A7^{(1)}$	ISO17025 calibration documents
$#1A6^{(1)}$	Z540 calibration documents

(1) Available for following specifications: Level, frequency, harmonic distortion, variable delay accuracy

Accessories Included

- Certificate of calibration
- Local power cord
- USB cable
- Agilent Automation Ready CD (Agilent I/O Library, IVI-COM driver)
- Product CD (Data Sheet, User Guide, Getting Started Guide, 81150
 IntuiLink Waveform Editor Software, Examples for Remote Access)

Optional accessories

#DOC	Printed documentation.	Includes	printed	Getting	Started

Guide and printed User Guide

#1CP Rack mount kit

#R1280A Additional 2-years warranty (3-years total)

Related Literature Pub. No. 5980-0489E Pulse Pattern and Data Generators **Brochure** Agilent 81150A 5989-7718EN Pulse Function Arbitrary Noise Generator Demo Guide Agilent 81150A 5989-7720EN Pulse Function **Arbitrary Noise** Generator Flyer Agilent 81150A 5989-7860EN Pulse Function Arbitrary Noise

www.agilent.com/find/81150

Product specifications and descriptions in this document are subject to change without notice.

For the latest version of this document, please visit our website at **www.agilent. com/find/81150** and go to the Product Library.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

www.lxistandard.org

LXI is the LAN-based successor to

connectivity. Agilent is a founding

member of the LXI consortium.

GPIB, providing faster, more efficient

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States:

(tel) 800 829 4444 (fax) 800 829 4433

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europe:

(tel) 31 20 547 2111

Japan:

(tel) 0120 (421) 345

Korea:

(tel) (080) 769 0800 (fax) (080) 769 0900

Latin America:

(tel) (305) 269 7500

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6755 0042

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Email: tm_ap@agilent.com Revised: 10/24/07

© Agilent Technologies, Inc. 2008 Printed in USA, February 15th 2008

5989-6433EN

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Generator

Application Booklet

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

