Tackling the Challenges of Fiber Testing in High-Density Fiber Data Centers

Agenda

- Welcome and Introductions
 - Lindsay Welch, TRS-RenTelco Marketing Manager
- TRS Overview
 - Micah Hurd, TRS-RenTelco Product Manager
- EXFO: BA-4000 Technical Applications
 - Gwenn Amice, Senior Member of Technical Staff at EXFO
- EXFO/TRS-RenTelco Partnership: Equipment & Special Promotions
- Q&A Joint TRS and EXFO

We provide comprehensive Test & Measurement solutions delivering equipment-as-a-service.

Plan, acquire, and efficiently utilize instruments to maximize return on investment.

- End-to-end fulfillment from our Dallas, TX headquarters
- 5,000+ configurable models available, valued at over \$500MM
- In-House Financing and flexible procurement programs to Rent, Lease, or Buy
- State-of-the-Art 20,000 sq ft Calibration Lab on site
- Same-Day-Shipping with Next Day Delivery Available

Why Do Customers Choose TRS-RenTelco?

Customer Service Excellence

Talk with a **Live Person** when you call

24/7/365 Technical Support

Late-Order processing

Comprehensive Solutions

Customized In-house Financing

Deep and wide **Inventory**

Equipment ships Ready To Use

Fulfillment Accuracy & Speed

Same-day Shipping

80% of CalibrationsPerformed In-house

99.72%
Customer-Scored
Equipment Quality
Ranking

Reliable Expertise

Strategic singular focus on the rental market

Top-tier rental partner to all major manufacturers

Financially Secure publicly traded company

INTRODUCTION

DENSIFICATION OF DC NETWORKS

1. GROWTH OF HYPERSCALE, CLOUD, AND AI-DRIVEN DATA CENTERS

Al and machine learning workloads require ultra-low latency and high-speed interconnects for best performances

Cloud providers (AWS, Google, Azure, META, X) continuously expand fiber infrastructure for global demand

2. DEEP INFRASTRUCTURE CHANGES

Parallel optics becoming predominant transmission technology, leading the way to high fiber count ribbon cables and VSFF type of fiber optic connectors.

3. ADOPTING RIGHT TESTING STRATEGY IS CRITICAL

Small mistakes in testing scale exponentially, impacting thousands of fibers.

Complexity increases the need for precise testing, polarity management, and connector cleaning.

¥	
Ш	

Name	Standard	Release	Form factor	Wavelengths	Fiber	Distance	Loss (dB)	Fiber count	Connector
25GBASE-SR	IEEE 802.3by	2016	SFP28	850	OM3	70	1.8	2	Duplex
ZOODAOL OK	1222 002.00y	2010	: 01120	:	OM4	100	1.9	<u>-</u>	(LC, CS, SN, MDC)
50GBASE-SR	IEEE 802.3cd	2018	SFP56	850	OM3	70	1.8	2	Duplex (LC, CS, SN, MDC)
			:		OM4	100	1.9	:	
100GBASE-DR	IEEE 802.3cd	2019	QSFP28	1310	OS1	500	3	2	Duplex (LC, CS, SN, MDC)
100GBASE-SR2	IEEE 802.3cd	2019	QSFP56	850	OM3	70	1.8	. 4	Base-4
TOUGHAUL-UNZ	1222 002.000	2013		:	OM4	100	1.9	:	(MPO)
100GBASE-VR	IEEE 802.3db	(Dec)	QSFP28	850	OM3	30	1.6	2	Duplex
		(200)			OM4	50	1.7		(LC, CS, SN, MDC)
100GBASE-SR	IEEE 802.3db	(Dec)	QSFP28	850	OM3	60	1.7	<u>.</u> 2	Duplex (4.0.00 AN ARC)
		. ,			OM4	100	1.8	:	: (LC, CS, SN, MDC)
200GBASE-DR4	IEEE 802.3bs	2017	QSFP56	1310	OS1	500	3	8	Base-8 (MPO)
200GBASE-SR4	IEEE 802.3cd	2019	QSFP56	850	OM3	70	1.8	. 8	Base-8
200GBA3E-3R4	1EEE 802.300	2019	QSFF30	650	OM4	100	1.9	•	(MPO)
200GBASE-VR2	IEEE 802.3db	(Dec)	QSFP-DD	850	ОМ3	30	1.6	4	Base-4
ZUUODAOL-VIXZ	ILLE 002.00D	(BCC)	QOIT-DD		OM4	50	1.7	· -	(MPO)
200GBASE-SR2	IEEE 802.3db	(Dec)	QSFP-DD	850	OM3	50	1.7	4	Base-4
		(200)			OM4	100	1.8	<u> </u>	(MPO)
400GBASE-DR4	IEEE 802.3bs	2017	QSFP-DD	1310	OS1	500	3	: 8	Base-8
				-			:	:	(MPO)
					OM3	70	1.7		Base-8
00GBASE-SR4.2	IEEE 802.3cm	2020	QSFP-DD	850,910	OM4	100	1.8	. 8	(MPO)
			:		OM5	150	2	:	
400GBASE-SR8	IEEE 802.3cm	2020	QSFP-DD	850	OM3	70	1.8	16	Base-16 (MPO, SN-MT, MMC)
	:			:	OM4	100	1.9		
400GBASE-VR4	IEEE 802.3db	(Dec)	QSFP112	850	OM3	30	1.6	: 8	Base-8 (MPO)
			:	-	OM4 OM3	50 60	1.7		:
400GBASE-SR4	IEEE 802.3db	(Dec)	QSFP112	850	OM4	100	1.7	8	Base-8 (MPO)
				-	OIVI4	100	. 1.0		
800G-PSM8	800G Pluggable MSA	2020	QSFPDD-800	1310	OS1	100	2.8	16	Base-16 (MPO, SN-MT, MMC)
			:		OM3	30	1.6		
800GBASE-VR8	IEEE 802.3df	TBC	QSFPDD-800	850	OM4	50	1.7	16	Base-16 (MPO, SN-MT, MMC)
					OM3	60	1.7		Base-16
800GBASE-SR8	IEEE 802.3df	TBC	QSFPDD-800	850	OM4	100	1.8	16	(MPO, SN-MT, MMC)
					-		:	:	Base-16
800GBASE-DR8	IEEE 802.3df	TBC	QSFPDD-800	850	OS1	500	: 3	: 16	(MPO, SN-MT, MMC)

Optical fiber cable

Gel filled loose tube

- Outdoor use
- Water-resistant gel
- Single or multi tube
- <250µm fiber buffer</p>

Dry wrapped

- Outdoor use
- Water blocking tape
- High density fiber
- <250µm fiber buffer</p>

- Outdoor use
- Gel filled or dry
- Strength member
- <250µm fiber buffer</p>

- Outdoor use
- HDPE tubes
- Compressed air installation
- <250µm fiber buffer</p>

- Indoor use
- Tight buffered
- Aramid protective yarn
- 900µm fiber buffer

- Indoor use
- Hydra design
- Pre-connectorized
- <3mm cable jacket</p>

- Indoor use
- Breakout design
- Pre-connectorized
- <3mm cable jacket

- Indoor use
- Pre-connectorized
- <3mm cable jacket</p>

Optical fiber connectivity

Duplex LC Lucent connector 1.25mm ferrule Also available in simplex MDC 1.25mm ferrule Native duplex SN VSFF 1.25mm ferrule Native duplex CS VSFF 1.25mm ferrule Native duplex

Spine and Leaf design

Network infrastructure

COMPONENT TESTING

Active and passive

LINK TESTING

Active and passive

ESSENTIAL TOOLS AND TECHNIQUES

CONNECTOR INSPECTION

Cause of network failures 10% Dirty/damaged connectors Macrobends TRS RenTelco

THE NUMBER 1 CAUSE OF NETWORK FAILURE IS

WHAT IS A FIBER INSPECTION SCOPE (FIP)?

DEFINITION

A FIP is a specialized microscope that:

- Takes a picture of the small connector end-face
- Locates and measures all defect and scratches found on the connector end-face
- Applies industry standard thresholds
- Gives a clear Pass/Fail status on the quality of the connector end-face

EXFO

FIP-500

FIBER INSPECTION STANDARD

ARE DIVIDED IN ZONES WITH DIFFERENT TOLERANCES

IEC 61300-3-35
Fiber-optic interconnecting devices and passive components—basic test and measurement procedures

Zones	Scratches	Defects
A: Core	None	None
B: Cladding	No limit ≤3 μm None >3 μm	No limit <2 µm 5 from 2 – 5 µm None >5 µm
C: Adhesive	No limit	No limit
D: Contact	No limit	None ≥10 µm

Pass/Fail criteria example

INSPECT CLEAN - INSPECT CONNECT

TRS RenTelco

CONNECTOR INSPECTION XFO FIP-500

MPO CONNECTOR INSPECTION

CLEANING METHODS

DRY METHOD

- AN EFFICIENT TECHNIQUE FOR REMOVING LIGHT CONTAMINANTS
- OFTEN CONSIDERED THE TECHNIQUE OF CHOICE IN A CONTROLLED MANUFACTURING
- ENVIRONMENT WHERE SPEED AND EASE OF USE ARE IMPORTANT FACTORS

Advantages	Limitations
Convenience of readily available tools	Can possibly create electrostatic charges
Fast and easy	Not effective in removing all contaminant types

EXAMPLE OF DRY-CLEANING SUPPLIES:

- SPECIALIZED LINT FREE WIPES AND SWABS
- MECHANIC CLEANING DEVICES

CLEANING METHODS

WET METHOD

- A COMMON MISTAKENLY USED METHOD BASED ON THE PROPERTIES OF THE SOLVENT
- MANY SPRAYS ARE AVAILABLE WITH DIFFERENT PROPERTIES (W/ ALCOHOL, W/O ALCOHOL, >70%, >95%, ETC...)

Advantages	Limitations
Fast and easy	Will false temporarily connector values as the solvent will act as an index matching gel
	If not dry, solvent will eventually evaporate but not completely. Leaving some impurities and the risk of gluing bigger debris.

After drying

© EXFO Inc. All rights reserved.

CLEANING METHODS

COMBINATION METHOD (HYBRID)

- COMBINATION CLEANING IS A MIX OF THE WET AND DRY-CLEANING METHODS
- TWO STEP PROCESS: USE A SOLVENT AND DRY AFTER

Advantages	Limitations
Cleans most soil types	Requires multiple products
Reduces potential static field soil accumulation	
Automatically dries moisture and solvent used in the cleaning process	
Captures soil in wiping material as an integrated aspect of cleaning procedure	
Not expensive	

EXAMPLE OF COMBINATION CLEANING SUPPLIES:

SPECIALIZED WIPES AND SOLVENTS

OLTS-TIER 1

INDUSTRY COMPLIANCE

Ensures adherence to TIA, ISO, and IEC standards, which are critical for high-performance data center operations and securing manufacturers' warranty coverage.

PERFORMANC E VALIDATION

Verifies that polarity, insertion loss (IL) and optical return loss (ORL) meet required performance criteria.

SCALABILITY

Certifies links to support future data rates and technology upgrades.

TROUBLESHOOTIN G

Quickly detects installation issues (e.g., poor splices, dirty connectors), hence minimizing downtime.

TIER 1 TESTING

TIER 1 TESTING CERTIFICATION – OPTICAL LOSS TEST SET (OLTS)

•Insertion Loss: Using Light Source and Power Meter to measure the total light loss (attenuation) between two endpoints and determines pass/fail certification.

•Length Measurement: Verifies that the installed fiber length matches planned design or

standards.

•Polarity: Verifies continuity between Tx and Rx. Essential for Multi-fiber

EXFO

EXFO PXM/LXM

EXFO

WHY IS TIER-1 CERTIFICATION CHALLENGING?

TIME CONSUMING

Some solutions take several seconds to run a test, which becomes very cumbersome in diverse and high-density fiber environments.

Each second counts.

REFERENCING ERRORS

Referencing is one of the main causes of errors that result in bad measurements. Traditional two-cord referencing increases setup time, while being difficult to handle and not compliant with standards.

WRONG POLARITY TYPE

Determining polarity types across multiple fibers (duplex or base-8/12) is a challenge. Mismatches in polarity can disrupt light transmission and compromise network functionality.

CONNECTORS DIVERSITY

No solution available on the market to address multiple types of multi-fiber (8-12) and duplex fiber connector types (e.g., LC, SN, MDR and MPO).

TIME CONSUMING

Current solutions take several seconds to run a test, which becomes very cumbersome in diverse and high-density fiber environments.

Each second counts.

QTY	Fiber Count
4	6,912 Fibers

MPO	Fiber Count
12F	27,648 Fibers

= 27,648 Fibers

= 2,304 Connections

Each second counts!

Test time Per connection	Total Test Time
1s	38.4 min or 0.65 hours
4s	2.56 hours
6s	3.84 hours

REFERENCING ERRORS

Referencing is one of the main causes of errors that result in bad measurements. Traditional two-cord referencing increases setup time, while being difficult to handle and not compliant with standards.

An onboard reference assistant will ensure the reference is done correctly. A bad reference is the main cause of errors and incorrect measurements.

Ready to test >

One-CORD REFERENCING

REFERENCING ERRORS

Referencing is one of the main causes of errors that result in bad measurements. Traditional two-cord referencing increases setup time, while being difficult to handle and not compliant with standards.

Perform one-cord referencing on:

- Duplex VSFF connectors (SN and MDC)
- Duplex LC uniboot test cords
- MPO pinned and unpinned connectors
- CommScope reversed polarity MTP

Compliant with standard recommendations

TIER 1 TESTING

WHEN SELECTING AN OPTICAL LOSS TEST SET (OLTS) FOR TIER 1 DUPLEX AND MULTIFIBER TESTING IN A DATA CENTER, TWO KEY FACTORS SHOULD BE CONSIDERED:

- Testing Speed and Efficiency: Look for an OLTS that offers fast and efficient testing capabilities, especially for multifiber links. In a high fiber count context, a fast instrument can save days and even weeks of testing in a single project.
- Connector Types: The OLTS should be compatible with the specific connectors used in your data center, such as LC, MPO/MTP and VSFF duplex and multifiber

OTDR/IOLM TIER 2 END-TO-END CERTIFICATION

WHAT DOES AN OTDR/IOLM DO?

- Break points
- Splice and connector losses
- ✓ Point-to-point distances
- ✓ Total cable length
- Connector quality (return loss)

When to use an OTDR/iOLM:

- ✓ Installation and commissioning
- ✓ Maintenance
- Emergency restoration
- ✓ Fiber identification

TROUBLESHOOTING USING AN OTDR

TRS RenTelco

EXFO

TRUNK CABLING EXTERNAL

TIER-2 LINK CERTIFICATION

TROUBLESHOOTING COMPLEX LINKS

TROUBLESHOOTING COMPLEX LINKS

TROUBLESHOOTING COMPLEX LINKS

FAULT RESOLUTION

BAD CONNECTION

GOOD CONNECTION

MEASURING LOSS WITH OTDR/iOLM

The uncertainty of IL measurements with OTDRs is dependent of the **methodology** as well as the **analysis**:

- Reflectometry vs. advanced reflectometry
- Using a launch fiber
- Using a launch and a receive fiber
- Uni-directional or bi-directional
- · Central wavelength
- BAD SETTINGS = false measurements

MEASURING LOSS WITH OTDR/iOLM

LEGACY OTDRS

- OTDR's were designed to provide distance to the fault
- Traces used to be very noisy and slow
- Only knowledgeable user could use OTDRs:
 - Wrong settings = false measurement
 - Loss was measured manually using markers (not automated)

Tier 1 vs Tier 2

IDEAL FOR TIER 1 CERTIFICATION

STRENGTHS

- Automated IL + ORL + length
- Very fast
- Reference validation (EXFO)
- End-to-end loss measurement + polarity + continuity
- Bidirectional or unidirectional

WEAKNESSES

- Needs referencing
- Cannot pinpoint faults
- No distributed loss

IDEAL FOR CHARACTERIZATION AND TIER 2 CERTIFICATION

STRENGTHS

- No reference
- Accurate (end-to-end and events)
- Distributed loss measurement
- Mapping of event
- Full automation via iOLM
- End-to-end loss measurement + continuity using LF and RF
- Bidir or unidirectional

WEAKNESSES

- Test time longer than OLTS
- Not Tier 1
- Traditional OTDR complexity

CONCLUSION & KEYTAKEAWAYS

TAKE AWAYS

- A strong working relationship with your customer, vendor and contractor
- Have the right tools.
- Understand the features and functions of your test equipment.
- Quality vs Time
- Automated Job management and reporting

800.874.7123

- EXFO Rental Partner with an expansive inventory and a full range of acquisition options:
 - Short and Long-Term, Full-Service Rentals (overnight exchanges available)
 - Minimize user downtime
 - Operating Leases
 - Sales of NEW equipment through distribution sales
 - 0% Financing for New and Certified Pre-Owned Equipment
 Call us today for a free consultation to see how we can help!
 800.874.7123

Questions?

TRSRenTelco EXIC