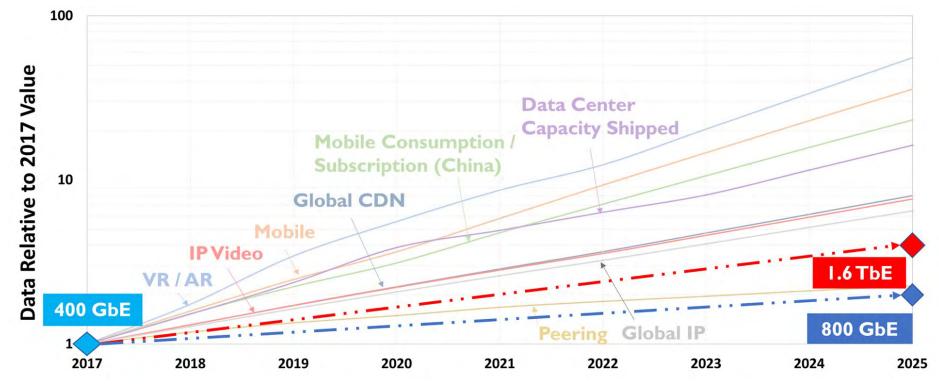
The Case for 1.6 Terabit Ethernet

IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group Electronic May 2021 Session

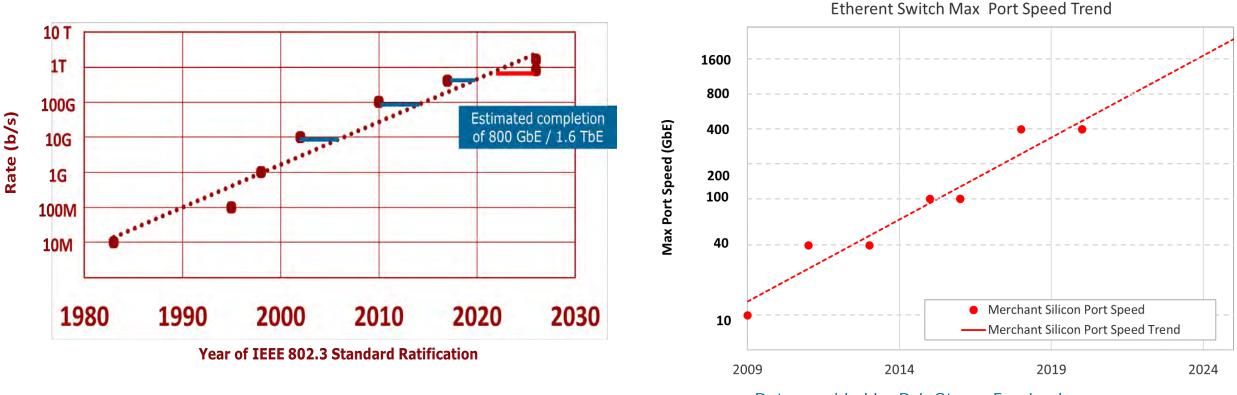
John D'Ambrosia, Futurewei, U.S. Subsidiary of Huawei


24 May 2021 Electronic Meeting

Supporters

- Brad Booth, Microsoft
- Weiqiang Cheng, China Mobile
- Cedric Lam, Google
- Lei Guo, Baidu
- Rob Stone, Facebook
- Min Sun, Tencent
- Haojie Wang, China Mobile
- Chongjin Xie, Alibaba
- John Abbott, Corning
- Vipul Bhatt, II-VI
- Matt Brown, Huawei
- Leon Bruckman, Huawei
- John Calvin, Keysight
- Mabud Choudhury, OFS
- Kazuhiko Ishibe, Anritsu
- Hideki Isono, Fujitsu Optical Components

- Sam Kocsis, Amphenol
- Kent Lusted, Intel
- David Malicoat, Senko
- Eric Maniloff, Ciena
- Jerry Pepper, Keysight
- Scott Schube, Intel
- Andy Moorwood, Keysight
- Sridhar Ramesh, Maxlinear
- Steve Swanson, Corning
- Tomoo Takahara, Fujitsu
- Jim Theodoras, HG Genuine
- Nathan Tracy, TE Connectivity
- Ed Ulrichs, Intel
- Xinyuan Wang, Huawei
- James Young, CommScope
- Ryan Yu, SiFotonics

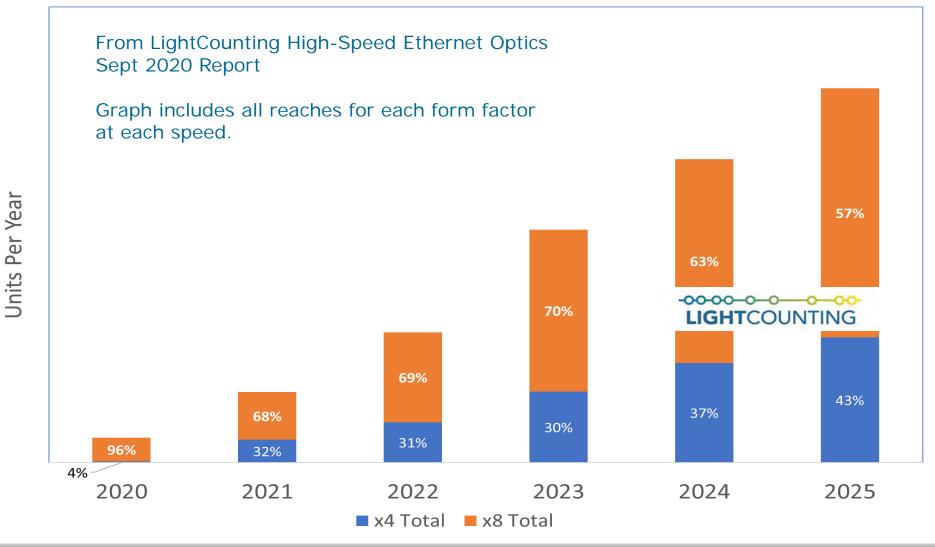

Foreword – Excerpt IEEE 802.3 Ethernet BWA

Assuming a new project to define the next rate of Ethernet begins in 2020, and takes 5 years to complete (2025), growth rate curves based on either 800GbE or 1.6TbE were also generated and compared to the submitted data. Assuming no other architectural changes in deployment, <u>this</u> overlay demonstrated a significant growth lag between 800GbE and the observed growth curves. However, the 4 × growth curve generated by a 1.6TbE solution would also lag all observed growth curves, except "Peering Traffic". Furthermore, all of the underlying factors that drive a bandwidth explosion, including (1) the number of users, (2) increased access rates and methods, and (3) increased services all point to continuing growth in bandwidth.

Source:<u>https://www.ieee802.org/3/ad_hoc/bwa2/BWA2_Report.pdf</u>

Is 800 GbE defined by IEEE 802.3 late?

Data provided by Rob Stone, Facebook


Ethernet Technology Consortium publicly released 800 GbE specification (https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf)

- Draft 1.0 dated March 10, 2020
- Based on 8x100G (references to various IEEE 802.3 clauses)

Industry Consortiums & Efforts - 800G related Efforts

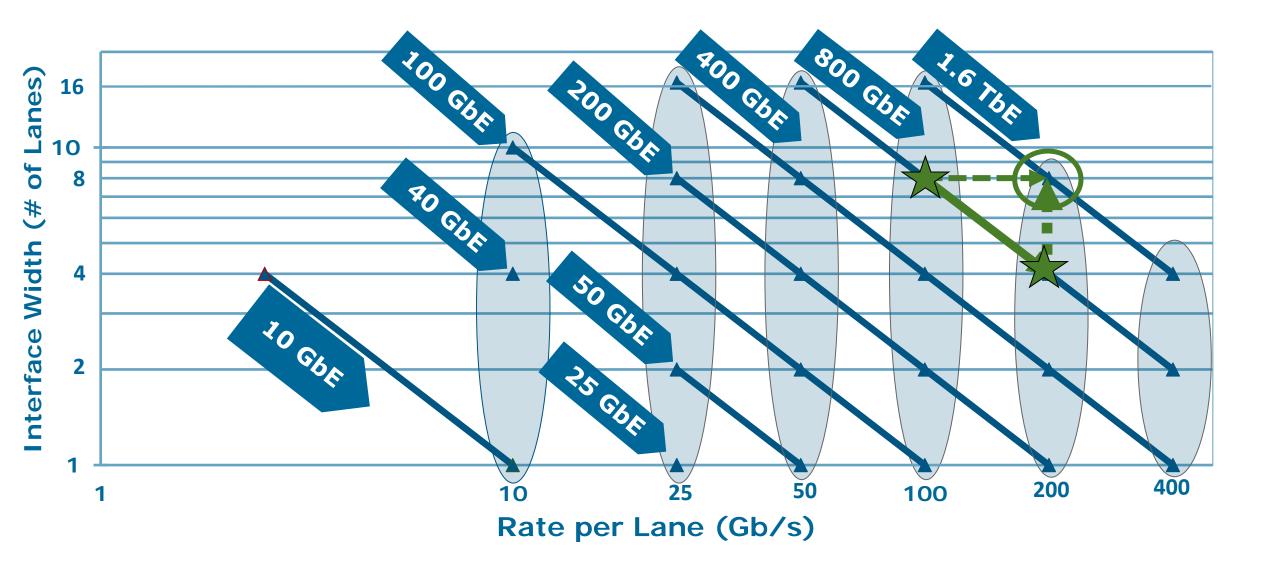
- QSFP-DD-800G (<u>http://www.qsfp-dd800.com/wp-content/uploads/2020/03/QSFP-DD-800-Hardware-1p0-3-6-20%20FINAL.pdf</u>)
 - Draft 1.0 dated March 6, 2020
 - Based on 8x100G
- OSFP MSA
- □ 800G Pluggable MSA 800G-PSM8 (<u>https://static.s123-cdn-static-d.com/uploads/2598123/normal_5f50dfed42c1e.pdf</u>)
 - Draft 1.0 dated August 28, 2020
 - Based on 8x100G
- □ COBO 8 / 16 lane solutions
- □ CPO
- It is recognized that an 800G port is a multi-rate port that could support 8x100GbE, 4x200GbE, 2x400GbE, or 1x800GbE

Comparison of Form Factor Adoption (200GbE / 400GbE / 800GbE)

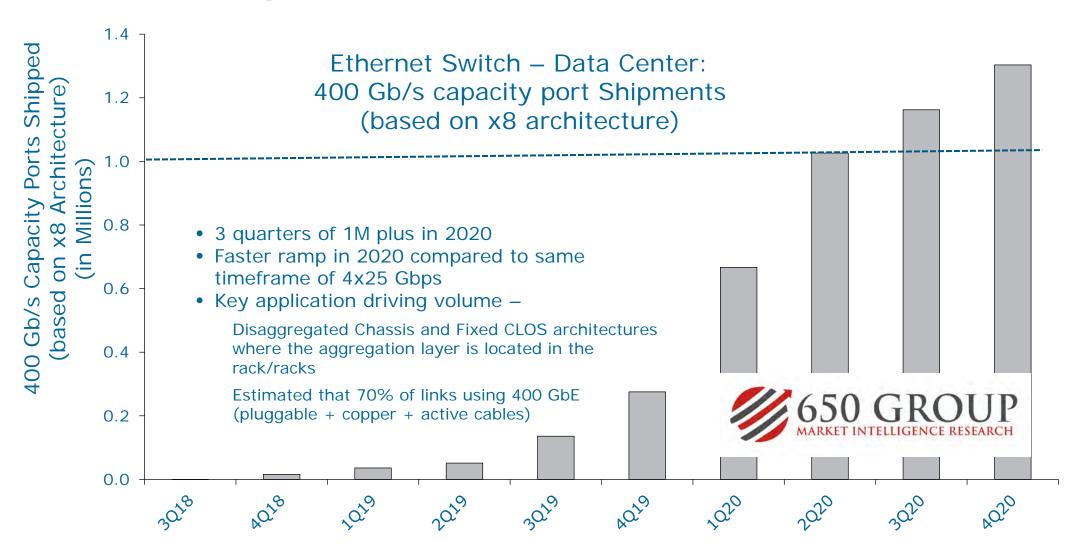
IEEE 802.3 May 2021 Session - IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

IEEE 802.3 Ethernet Optical Landscape (based on >=50 Gb/s signaling per lane, excluding ZR)

Ethernet Rate	Signaling Rate	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km
100 Gb/s	50 Gb/s		Over 2 pair				
	100 Gb/s	Over 1 pair**	Over 1 pair**	Over 1 λ (pair)	Over 1 λ (pair)	Over 1 λ (pair)	
200 Gb/s	50 Gb/s		Over 4 pair	Over 4 pair			
	50 Gb/s				Over 4 λ 's	Over 4 λ's	Over 4 \u03b3's
	100 Gb/s	Over 2 pair*	Over 2 pair*				
400 Gb/s	50 Gb/s		Over 8 pairs Over 4 pairs (4.2)				
	50 Gb/s				Over 8 λ's	Over 8 λ's	Over 8 \u03b3's
	100 Gb/s	Over 4 pair**	Over 4 pair**	Over 4 pairs			
	100 Gb/s				Over 4 λ 's	Over 4 λ's (6km)	
800 Gb/s*	100 Gb/s	Over 8 pairs	Over 8 pairs	Over 8 pairs			
	200 Gb/s			Over 4 pairs	Over 4 pairs		
	200 Gb/s				Over 4 λ 's		
	TBD					Over single SMF in each direction	Over single SMF in each direction

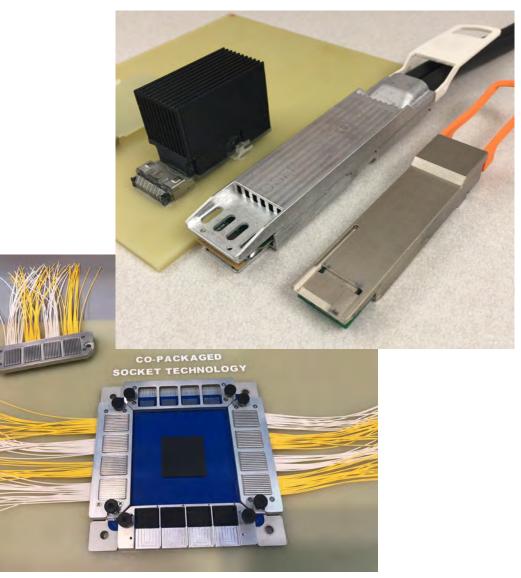

- *- Objectives for B400G Study Group
- ** Objectives for IEEE P802.3db

24 May 2021 IEEE 802.3 May 2021 Session - IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

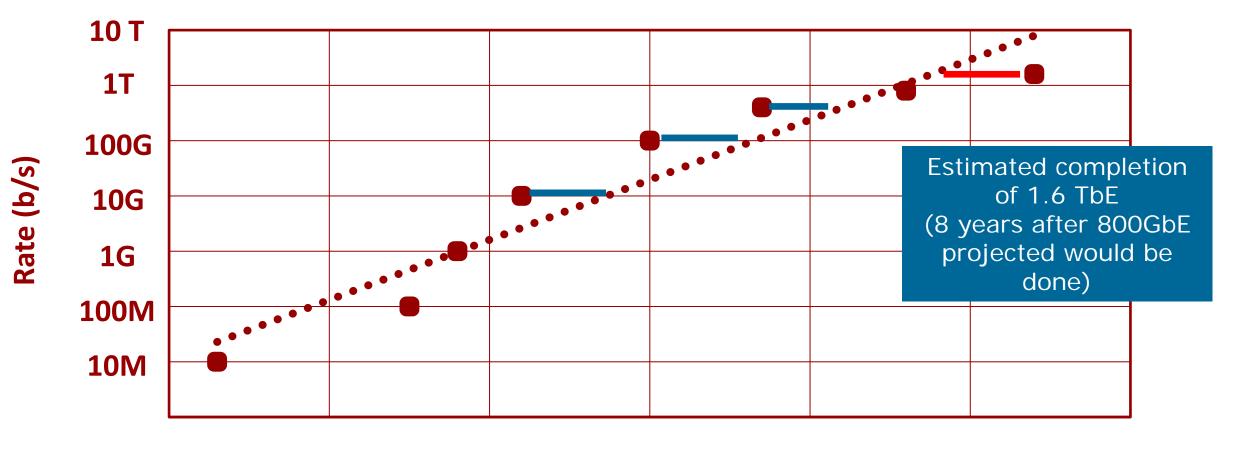

Summary of Trends

- Industry efforts at developing 800 GbE and 800 Gb/s capacity solutions have been underway prior to March 2020.
- □ Optical form factors based on x8 will be >50% for 200/400/800
- □ IEEE 802.3 existing PHYs
 - Signaling technologies are leveraged across multiple ethernet rates
 - MMF: use of 1 / 2 / 4 / 8 pairs
 - PSM: use of 1 / 4 / 8 pairs
 - SMF: use of 1 / 4 / 8 λ 's
- □ IEEE 802.3 Beyond 400 Gb/s Ethernet
 - Optional 800 Gb/s attachment unit interfaces (AUIs) for chip-to-module and chip-to-chip applications
 - 8 lanes (assumed 8 x 100 Gb/s)
 - 4 lanes (assumed 4 x 200 Gb/s)
 - Physical Layer Objectives targeting 800 Gb/s, <= 2km
 - 8 lanes (assumed 8 x 100 Gb/s)
 - 4 lanes (assumed 4 x 200 Gb/s)

The Relationship Between Ethernet & Signaling Rates

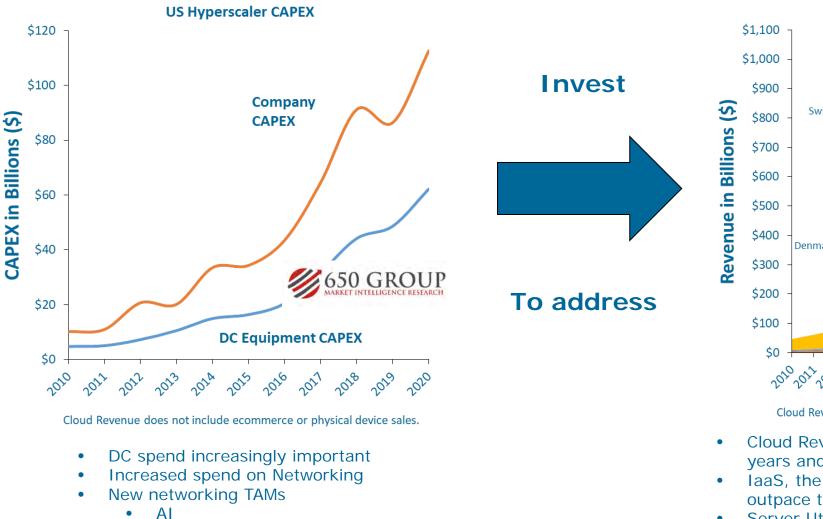

Growing Acceptance of x8 Solutions

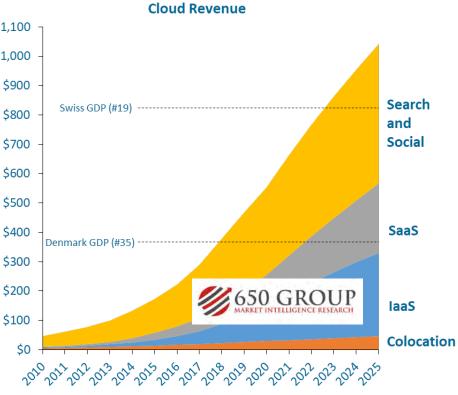
Used with permission, Alan Weckel, 650 Group


The New Paradigm

- There has been a shift to multirate ports: x1, x2, x4, x8
- Ethernet PHYs have been developed based on x1, x2, x4, and x8 lane rates
- Market acceptance has been highlighted.
- □ This project
 - is continuing this trend with 8 x 100 Gb/s physical layer specifications
 - should continue that trend based on 200 Gb/s signaling

Used with permission, Nathan Tracy, TE Connectivity

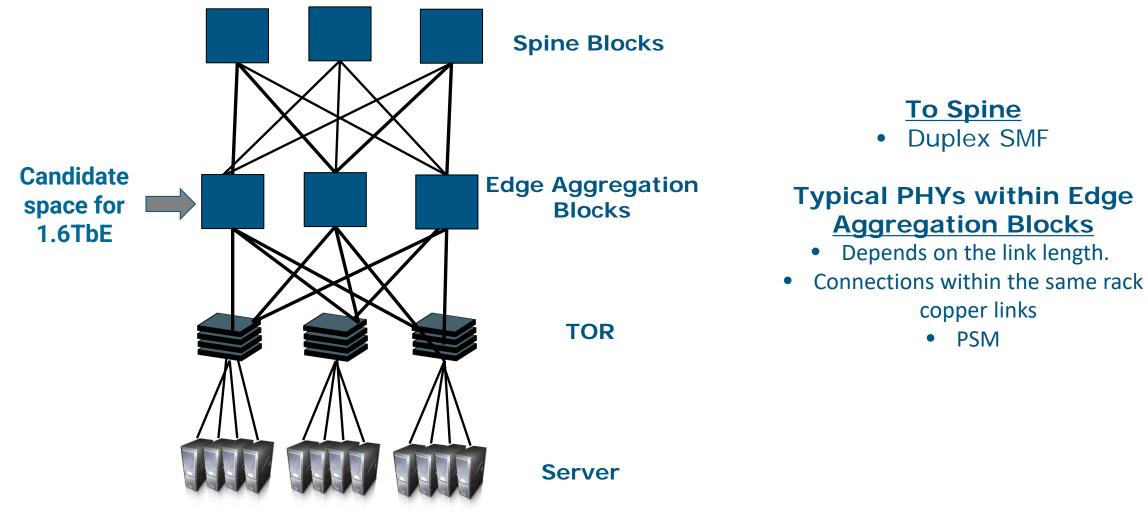

Developing 800 GbE / 1.6 TbE in separate "Next Speed" Projects



1980 1990 2000 2010 2020 2030 2040

Year of IEEE 802.3 Standard Ratification

Looking at the Cloud


Cloud Revenue does not include ecommerce or physical device sales.

- Cloud Revenue has been doubling in size ever 2-3 years and will double again by 2025
- IaaS, the consumer of highest speed ports will outpace the market
- Server Utilization continues to improve

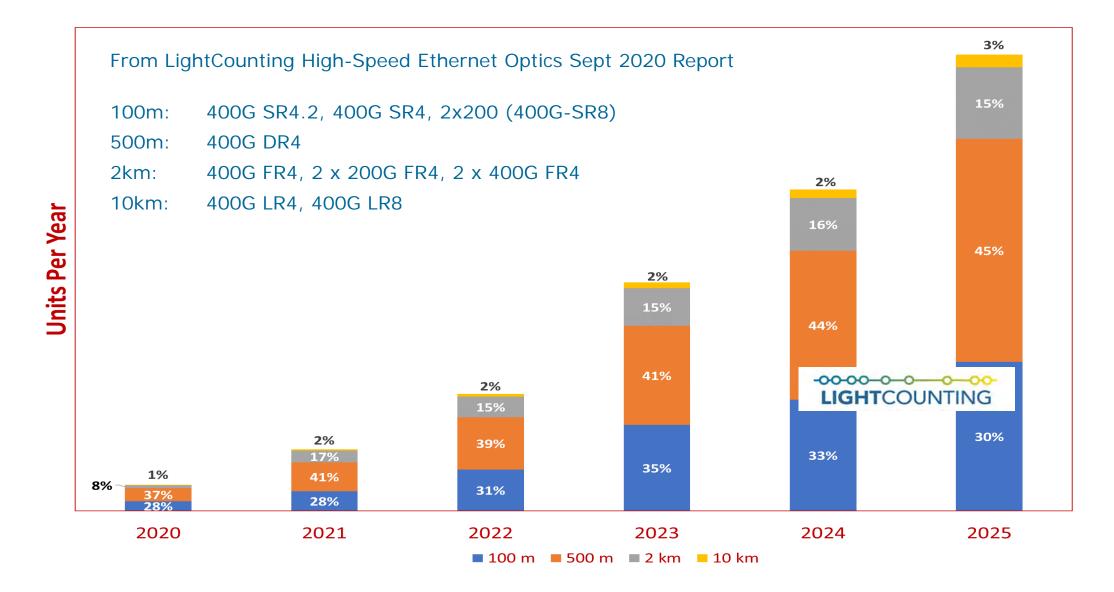
Used with permission, Alan Weckel, 650 Group

DCI

Where would 1.6 TbE make sense in hyperscale datacenters?

To Spine

Aggregation Blocks


Depends on the link length.

copper links

• PSM

Duplex SMF

Forecast – Transceiver Modules Targeting 200 GbE or 400 GbE

24 May 2021

IEEE 802.3 May 2021 Session - IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group

Comments on 1.6 Tb/s Already

- Per nowell_b400g_01_210118 "Lack of 1.6 TbE doesn't preclude 1.6T pluggable modules (e.g. 2x 800 GbE)"
- Per chopra_b400g_01_210208
 - forecasted 51.2T switch silicon BW in 2022 (based on doubling \approx every two years)
 - Define 1.6TE MAC
 - Only if there is a cost effective PMD solution
 - Over 212G to enable 102.4T with radix 64 (64x1.6TE)
- My observations
 - Assume doubling then slows to every four years, 102.4T switches by 2026 (estimated end of future TF)
 - B400G SG has adopted
 - Objectives to define (assuming 100 Gb/s signaling):
 - Optional 800 Gb/s AUIs over 8 lanes for chip-to-module and chip-to-chip applications
 - over 8 pairs of SMF with lengths up to at least 500 m
 - Objectives to define (assuming 200 Gb/s signaling):
 - Optional 800 Gb/s AUIs over 4 lanes for chip-to-module and chip-to-chip applications
 - over 4 pairs of SMF with lengths up to at least 500 m
 - over 4 pairs of SMF with lengths up to at least 2 km
 - Assumed 1.6 Tb/s Port with module supporting 2 800GbE PHYs will be developed.
 - Provides market with solutions for multiple applications
 - 8 ports of 200 GbE, 4 Ports of 400 GbE, 2 Ports of 800 GbE, 1 Port of 1.6 TbE
 - Simply put this is obvious if IEEE 802.3 doesn't address this, it will be done outside of IEEE and technical decisions
 outside this body could influence future 802.3 technical decisions
 - 1.6 Tb/s interfaces being touted already <u>https://blogs.cisco.com/sp/ciscociscosilicononeg100announcement</u>

Summary

- 800 GbE is late
 - Industry has stepped in via ETC 800 GbE specification based on IEEE 802.3 work
- Industry adopting x8 solutions supporting existing multiple Ethernet rates
- The B400G Study Group has adopted 800 Gb/s objectives targeting the following
 - Optional 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
 - 8 lanes (assumed 8 x 100 Gb/s)
 - 4 lanes (assumed 4 x 200 Gb/s)
 - Physical Layer Specifications
 - Over 8 fibers of SMF for 500m (8x 100 Gb/s)
 - Over 4 fibers of SMF for 500m (4 x 200 Gb/s)
 - Over 4 Fibers of SMF for 2km (4 x 200 Gb/s)
- 1.6 TbE needs to be considered now so we won't be late with it
 - Focus the physical layer specification work
 - Leverage x8 solutions
 - Leverage specifications based on 200 Gb/s signaling being developed for 800 GbE
- Everything is in place to be leveraged to develop 1.6 TbE, AUIs, and PHYs for target application space

Recommendation

Adopt the following objectives

- Support a MAC data rate of 1.6 Tb/s
- Support optional eight-lane 1.6 Tb/s attachment unit interfaces for chipto-module and chip-to-chip applications
- Define a physical layer specification that supports 1.6 Tb/s operation:
 - over 8 pairs of SMF with lengths up to at least 500 m
 - over 8 pairs of SMF with lengths up to at least 2 km